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1 Economic models of discrimination

An enormous literature, starting with Becker’s 1957 book The Economics of Discrimination,

explores the economics of discrimination. Economic models of discrimination can be divided

into two classes: competitive and collective models. Competitive models study individual max-

imizing behavior that may include discrimination. In collective models, groups acts collectively

against each other. Almost all economic analysis has focused on competitive models, and we’ll

do similarly here. Competitive models can further be divided into taste-based and statistical

models of discrimination. Becker’s’ model studied the former case, and we’ll start with that.

First, we need to define discrimination. For our purposes, discrimination is when members

of a minority are treated differently (less favorably) than members of a majority group with

identical productive characteristics. Let the wage Y be equal to

Y = Xβ + αZ + e, (1)

where X is a vector of exogenous productivity characteristics and Z is an indicator variable

for membership in a minority group. Assuming that Xβ fully captures the set of productive

characteristics and their returns and/or Z is uncorrelated with e, then discrimination is a case

where α < 0.

We already face difficulties just using this simple definition.

1. ‘Productivity’ may directly depend on Z — for example, in the entertainment industry

or a market in which customers value Z in workers (e.g., discriminating customers). If

customers will pay more to see a white actress or a black athlete, is this a legitimate

component of productivity?

2. There is also a question of whether β — the production technology — is truly exogenous.

For example, fire fighting equipment requires considerable physical strength and zie to

operate, an argument against the entry of women should not enter this profession. But

these requirements are engineered attribute and probably could be altered. If humans

were 20% less physically strong, presumably we could still fight fires. It’s likely that in

Japan, fire-fighting equipment demands a smaller physical stature.
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3. The X 0s could also be endogenous. Pre-market discrimination — or expectations of future

discrimination — could reduce X 0s for members of the minority group. (Examples: poor

schools, or a rational belief among minorities that education will not be rewarded by the

market.)

Point (1) is one we may be able to examine directly. Point (2) and (3) are much harder to

test. But whether or not these are relevant, it can still be the case that α < 0 conditional on

both X and β, which would constitute discrimination.

2 Taste-based discrimination

Becker’s 1957 book introduced the first economic model of discrimination. In this model, em-

ployers hold a ‘taste for discrimination,’ meaning that there is a disamenity value to employing

minority workers. Hence, minority workers may have to ‘compensate’ employers by being more

productive at a given wage or, equivalently, by accepting a lower wage for identical productivity.

The basic insights of this model require almost no formalization, but we will formalize slightly.

• Let A denote majority group membership and B denote minority group membership.

• Employers will maximize a utility function that is the sum of profits plus the monetary

value of utility from employing members of particular groups.

• Let d be the taste parameter of the firm, which Becker called the “coefficient of discrimi-
nation.”

• Firms will maximize

U = pF (Nb +Na)− waNa − wbNb − dNb,

where p is the price level, F is the production function, Nx is the number of workers of

group x = {a, b}, and wx is the wage paid to members of each group.

• Employers who are prejudiced (d > 0) will act as if the wage of b group members is wb+d.

Hence, they will only hire b group members if

wa − wb ≥ d.
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• Let G (d) denote the CDF of the prejudice parameter d in the population of employers.

• The optimal number of workers hired at each firm is determined by the solutions to

pF 0 (Na) = wa,

pF 0 (Nb) = wb + d.

• Treating p as fixed and aggregating across firms in the economy leads to the market

demand functions Nd
a (wa, wb, G (d)) , N

d
b (wa, wb, G (d)) for each worker type. Wages are

determined by

Nd
a (wa, wb, G (d)) = Ns

a(wa),

Nd
a (wa, wb, G (d)) = Ns

a(wd),

where Ns (·) are the supply functions for the worker types.

• Notice the main point that comes out of this setup is this: A wage differential wb < wa

will arise if and only if the fraction of discriminating employers (or discriminating jobs)

is sufficiently large that the demand for B workers when wb = wa is less than the supply.

• In other words, discrimination on average does not mean discrimination at the margin.
If there are enough non-discriminating employers, then discrimination is competed away.

This also implies that minority workers don’t work for discriminating employers.

• If the share of prejudice employers is sufficiently large, then some b group members will
work at d > 0 employers, and this implies that wb < wa. In this case, the strength of

prejudice at the margin (that is d for the marginal employer of b workers) is what affects

determines the size of the wage gap.

• With free entry or constant returns to scale (CRS), these employers may be competed out
of business. In a competitive market, each worker must earn his marginal product. Under

CRS, non-discriminating firms would simply expand to arbitrage the wage differential

born by minority workers. In equilibrium, discriminating employers must fund the cost
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of their distaste out of their own pockets; they cannot past the cost onto the minority

worker.

So, to summarize:

• In partial equilibrium, minority workers must ‘compensate’ employers by being more
productive at a given wage or, equivalently, accepting a lower wage for equivalent pro-

ductivity.

• These tastes create incentives for segregation. It is potentially Pareto improving for

minority workers to work in their own businesses and similarly for majority workers —

then no one bears the cost of the distaste.

• In general equilibrium, these tastes can only be indulged at a positive cost to the employer.

Key testable implications of this model are:

• Wage differentials: Minority workers earn less than majority workers of identical produc-
tivity.

• Preferential hiring: Employers are less likely to hire minority workers of identical produc-
tivity.

• But these implications may not apply in equilibrium at the margin — so it’s not clear that
we should observe them.

Is it a necessary implication of this model that firms employing minority workers have higher

productivity? Not necessarily.

• Must distinguish: Discrimination at the margin from mean differences.

• Let’s say minorities are on average less productive than majority workers, and employ-
ers engage in taste-based discrimination. Then the marginal minority hire is underpaid

relative to a majority hire, but it could still be the case that productivity is higher at

non-minority workplaces.
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• However, profitability — that is output minus wages paid to factors — should be higher at
firms with greater minority employment.

• This again assumes that competition is not so ‘strenuous’ that all taste-based discrimi-
nation is eliminated.

2.1 Worker and customer discrimination

• Assume that some members of the a group are prejudiced against b workers and demand
a premium to work alongside them. This is similar to the case above, and leads to

segregation.

• Assume instead that customers discriminate against b workers and so get lower utility
from purchasing services from a firm if they have to interact with a b worker. This will

lower the labor market return to b workers to working in jobs with customer contact.

• In this case, it is not clear that consumer discrimination will be competed away by the
market. This is because there is not an obvious way for one consumer to arbitrage the

prejudice of another. Yes — consumers who are prejudiced may have to pay higher prices

for goods. But this can be true in equilibrium; customers may be willing to bear these

costs.

• Hence, this model suggests that customer prejudice may actually present a more enduring
source of labor market discrimination than employer prejudice. The intriguing paper by

Holzer and Ihlanfeldt on your syllabus presents evidence on this point. Ashely Lester will

discuss the evidence on customer discrimination in Recitation on Friday.

2.2 Statistical Discrimination

Most economic analyses of discrimination since Phelps (1972) and Arrow (1973) have focused

on the statistical theory of discrimination, rather than taste-based discrimination. The premise

of the statistical discrimination literature is that firms have limited information about the skills

of job applicants. This gives them an incentive to use easily observable characteristics such

as race or gender to infer the expected productivity of applicants (if these characteristics are
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correlated with productivity). The Aigner and Cain (1977) article on your syllabus is the classic

reference on this topic.We’ll develop the statistical discrimination model, and then talk about

its implications.

Statistical discrimination is the solution to a signal extraction problem. If an employer

observes a noisy signal of applicant productivity and also has prior information about correlates

of productivity (let’s say a group-specific mean), then the expectation of applicant productivity

should place weight on both the signal and the mean. Two cases are commonly exposited,

and we’ll also look at a third. We’ll use normal distributions for simplicity, but this is not

substantively important.

2.2.1 Case 1: Difference in means

• Assume that when workers apply for jobs, the employer sees race of the applicant x =
{a, b} and some error-ridden signal η̃ of productivity.

• Assume that employers have learend from experience that

ηx ∼ N(η̄x, σ
2
η) with

η̄a > η̄b, and σ2η identical for a and b.

Hence, b group members are less productive on average, but the dispersion of productivity

is the same for both groups. Notice that we can write ηi = ηx + εi.

• The productivity signal is error ridden in the following sense:

η̃i = ηi + ιi where

ι ∼ N(0, σ2ι ), with σ2ι > 0.

Hence:

η̃i = η̄x + εi + ιi,

and E (η̃i|ηi) = ηi, meaning that the signal is unbiased.

• What is the expectation of η given η̃ and x? This is simply the regression equation,

E(η|eη, x) = ηx (1− γ) + eηγ, (2)

= ηx + (eη − ηx) γ.
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where γ = σ2ι/
¡
σ2η + σ2ι

¢
, which is the coefficient from a bivariate regression of η on η̃

and a constant (estimated seperately by group). Note that γa = γb in this example; all

that differs is that η̄a > η̄b.

• This equation immediately implies that the for a given η̃, the expected productivity of b

applicants is below a applicants — even though η̃ is an unbiased signal for both workers.

In particular

E(η|eη = k, x = a)−E(η|eη = k, x = b) = (ηa − ηb)× (1− γ) .

This expression will always be positive provided that σ2i > 0. (Draw yourself a picture.)

Two key points

• Notice the main insight/paradox of statistical discrimination:

E(η̃i|ηi, x) = ηi

but E(ηi|η̃i, x) 6= ηi (unless η̃i = η̄x).

• Is there equal pay for equal productivity in this model? No, not in general. There is equal
pay for equal expected productivity.

• Consider an a and b group worker who both have productivity η = k. So, E(η̃i|ηi, x) = k

for both workers. But, using equation (2), it is clear that E(η|η̃i = k, x = b) < E(η|η̃i =
k, x = a).

• Hence, for some workers, statistical discrimination is ‘discrimination’ in the sense of equa-
tion (1).

• But this will not be true on average within each group; expected productivity equals true
productivity on average. Be certain that you are clear on this point.
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2.2.2 Case 2: Different variances

• Now take a case where η̄b = η̄a and σ2ηa = σ2ηb = σ2η. So, the groups are identical in

expectation.

• But consider that the signal η̃ may be more informative for one group or another. This
would arise if for example a group managers were inaccurate judges of b group ability (or

you could assume the reverse). This means that σ2ιa 6= σ2ιb.

• It follows that γa 6= γb since

γx =
σ2η

σ2ιx + σ2η
.

• For whichever group has lower σ2ιx, η̃ will be more informative; employers will put less
weight on the mean for this group and more weight on the signal. See Figures 1a and 1b

of Cain and Aigner.

• Depending on whether you are above or below the mean of your group, you are differen-
tially helped or harmed by a steeper γx. If you are above the mean, you want the signal

to be as informative as possible. If you are below the mean, you prefer an uninformative

signal.

• Contrasting groups a and b as is done in the Cain and Aigner figures, you will see that

the expectation of η given η̃ will cross at η̄ for the two groups, and the relative steepness

of the a versus b slope will depend positively on σ2ιb/σ
2
ιa.

2.2.3 Case 3: Risk averse employers

• Cain and Aigner also discuss a third plausible case that is rarely examined in the literature:
Employer risk aversion.

• Here, there are diminishing returns to worker ability. Perhaps bad workers tend to destroy
machines by accident, but really good workers are only slightly more productive operatives

than average workers.
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• In this case, lower testing precision is harmful to all workers, not just those below the
mean.

• The estimation error of equation (2) is

e = E(η|eηi, xi)− η =
ισ2ι − εσ2η
σ2ι + σ2η

,

which has variance:

V (e) ≡ σ2e =
σ2ησ

2
ι

σ2η + σ2ι
.

This variance is increasing in σ2i since ∂σ2e/∂σ
2
ι = σ4η/

¡
σ2ι + σ2η

¢2
> 0. Lower signal

precision (a higher value of σ2i ) is harmful if employers are risk averse.

• This is another reason to be concerned if a group employers are less able to accurately
assess the productivity of b than a applicants — even if they are right on average.

2.2.4 Testing statistical discrimination

It’s difficult to test statistical discrimination because it may be impossible to observe how

employers form expectations. Almost any observed racial/gender difference in pay or hiring

can be attributed to statistical discrimination (which is a problem for the theory, not a virtue).

Almost all tests of statistical discrimination are therefore indirect. We’ll talk about these in

the ‘Evidence’ lecture.

2.2.5 Statistical discrimination: Efficiency, Legality, Fairness,

Efficiency It’s interesting to speculate on why economists have focused so much more atten-

tion on statistical than taste-based discrimination. My guesses:

1. The Becker model employs a modeling trick that many economists consider the last refuge

of scoundrels — adding arguments to the utility function. This is a pretty undisciplined

technique. By changing the utility maximand, you can pretty much get whatever you

want. Arguably, however, it is also the most natural approach here. Casual empiricism

says that much prejudice takes the form of ‘distaste.’
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2. Unlike taste-based discrimination, statistical discrimination is not competed away in equi-

librium. So, we can be reasonably confident that we should be able to find it in a general

set of cases.

3. Closely related to (2), statistical discrimination is ‘efficient.’ That is, statistical discrim-

ination is the optimal solution to an information extraction problem. Economists would

generally say that employers ‘should’ statistically discriminate. It is profit-maximizing, it

is not motivated by animus, and it is arguably ‘fair’ since it treats people with the same

expected productivity identically (though not necessarily with the same actual produc-

tivity). Hence, many economists might endorse statistical discrimination as good public

policy.

Legality That said, statistical discrimination is generally unlawful. It is illegal in the U.S.

to make hiring, pay or promotion decisions based on predicted performance where predictions

are based on race, sex, age or disability. Because minorities, women, those over age 40, and the

disabled are ‘protected groups,’ employers are not permitted to hire and fire them ‘at will.’ (An

employer presumably can statistically discriminate among non-disabled, white males under age

40.) Statistical discrimination is probably difficult to detect, however, and so it is plausible

that despite the law, it occurs frequently.

Fairness Leaving aside legality, it is worth asking whether statistical discrimination accords

with most commons notions of fairness. Here it’s useful to take a loaded example: racial

profiling. Say you are the New Jersey State Police, and there are some number of drug runners

who travel on your highways. You have a limited amount of resources to expend on stopping

cars, so you want to maximize your productive resources.

• Let’s go back to statistical discrimination Case 1: Difference in means. We are going to
recast η as a latent index of criminality.

• Assume that when police officers observe cars on the highway, they see the race of the
driver x = {a, b} and some error-ridden signal η̃, corresponding to a latent index that
that the driver is running drugs. For simplicity, define this assessment on the real line
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η̃ ∈ [−∞,∞]. A lower value of η̃ corresponds to a lower likelihood, and a higher value to
a higher likelihood. (If you like, you can map these latent index values, η̃, into the CDF

of the normal to get probabilities.)

• Assume that experience has taught the police that

ηx ∼ N(η̄x, σ
2
η) with

η̄a < η̄b, and σ2η identical for a and b.

b group members are more likely to be running drugs, though the variance of the latent

index is the same for both groups. As above, ηi|xi can be written as ηi = ηx + εi.

• The signal for any given car/driver is error ridden.

η̃i = ηi + ιi where

ι ∼ N(0, σ2ι ), with σ2ι > 0,

which is noisy but unbiased.

• How should the police allocate enforcement resources? The optimal decision rule will

involve a threshold value of η∗. Police will stop cars with E (η) ≥ η∗. One can formalize

this rule with a tiny search model, but I will not. The key point is that the police would

ideally like to stop only the highest probability cars. But waiting has an opportunity

cost, so it would be foolish to await only for cars with η̃i → ∞. Hence, the optimal
decision rule will choose some η∗ cutoff lower than ∞: Stop any car that meets a critical
value η∗. The threshold depends on the distribution of η, the arrival rate of cars, and

the opportunity cost of waiting. We’ll assume (with justification) that η∗ will exist, and,

with somewhat less justification, that the New Jersey State Police can solve for it.

• Assume that η∗ > η̄a, η̄b. Hence, only a minority of cars from either group should be

stopped.

• Since the police do not observe η for any car, they must form an expectation for this

value. Using the equations above, the expected value of η given η̃ and x is:

E(η|eη, x) = ηx + (eη − ηx)
¡
σ2η/

¡
σ2η + σ2ι

¢¢
,
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with estimation error,

e = E(η|eηi, xi)− η =
ισ2ι − εσ2η
σ2ι + σ2η

,

which has variance

V (e) ≡ σ2e =
σ2ησ

2
ι

σ2η + σ2ι
. (3)

• The variance of the expectation of η given x is the variance of true productivity minus

estimation error. Define ν = ε− e. We have,

V (E (η|eη, x)) = V (ν) = σ2η + σ2e − 2Cov (ε, e) = σ2η − σ2e.

This expression underscores a crucial point. So long as σ2ι > 0 (the signal is error-ridden),

the expectation of η given eη, x has lower variance than η. Therefore, this estimate ‘shrinks’
the true range of the underlying variable. (Draw a picture.)

• This is the essence of ‘racial profiling.’ Since the police know from experience that group
b members are more likely to be running drugs than group a members, it is efficient to

use this information in determining which cars to stop. You can demonstrate that this is

efficient by confirming that the marginal η stopped is the same for both a and b. In fact,

this is the decision rule.

• Note that for an individual with a ιi = 0, xi = x, the police will necessarily under- or

overestimate her true criminality unless ηi is equal to the group specific mean η̄x.

• Two important points follow from this rule.

1. The share of b cars stopped exceeds the share of a cars stopped. This can be seen

as follows:

Pr(Stop|x) = Pr (E(η|x) > η∗) (4)

= Pr (ν > η∗ − η̄x)

= Pr

µ
ν

σν
>

η∗ − η̄x
σν

¶
= 1− Φ

µ
η∗ − η̄x
σν

¶
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where Φ (·) is the cumulative density function of the standard normal distribution,
and the quantity in parentheses (η∗ − η̄x) /σν is the ‘effective screening threshold’

for group x. This quantity is the standardized difference between the group’s mean

and the threshold, scaled by screening precision. The lower is screening precision,

the smaller is σν, and the larger is the effective screening threshold.

— Differentiating (4) with respect to the group mean gives

∂ Pr(Stop|x)/∂η̄x = (1/σν)φ
µ
η∗ − η̄x
σν

¶
,

where φ (·) is the pdf of the standard normal distribution. Since φ (·) > 0, a

higher value of η̄x implies greater odds of being stopped.

— So, drivers from the b group are stopped more often.

2. The average η of b cars stopped exceeds that of a cars stopped. In other words, the

level of criminality (or the fraction of criminals) is higher among stopped b cars. You

can see this as follows:

E(η|Stop, x) = ηx +E (εη|ν > η∗ − η̄x) (5)

= ηx + σηE

µ
εn
ση
| ν
σν

>
η∗ − η̄x
σν

¶
= ηx + ρ

ην
σηλ

µ
ν

σν
| ν
σν

>
η∗ − η̄x

σ

¶
= ηx +

E [εη (εη − e)]

σησν
σηλ (Qx)

= ηx +
σ2ν
σησν

σηλ (Qx)

= ηx + σνλ

µ
η∗ − η̄x
σν

¶
,

where λ(Q) = φ(Q)/(1 − Φ(Q)) is the Inverse Mills Ratio (IMR) and φ(·) is the
density function of the standard normal distribution.

— Differentiating this expression with respect to η̄x gives

∂E(η|Stop, x)/∂η̄x = 1− λ0 (·) .
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— Since λ0 (z) < 1 for finite z, the expected criminality of those stopped is increas-

ing in, η̄x, the group mean.

— The reason is that the optimal stopping rule equates the marginal return to

stopping an a versus b driver. Because there is more mass to the right of η∗ for

the b group, this means that the average criminality of stopped b drivers will be

higher than a drivers .

• Most economists would view this stopping rule as ‘fair.’

— The marginal car stopped has the same expected criminality for both groups.

— There is no animus motivating these choices (i.e., taste-based discrimination).

— Moreover, the average criminality is actually higher among the b group than the a

group, despite the higher frequency of stops of b members.

— Resources are efficiently deployed.

• So, why do civil libertarians complain? And why do b group members get upset about

being stopped for “DWB” (‘Driving While Black’)?

• One possible answer is that well-intended liberals don’t understand basic statistical prin-
ciples.

• Another answer is that this system will seem demonstrably unfair to group b members

who are not criminals.

• Consider two citizens, one from group a, the other from group b, who have the same

η = k. Assume that k < η∗, so neither ‘should’ be stopped. What is the likelihood that

each is stopped?

Pr (Stop|η = k, x) = Pr (E(η|x, η = k) > η∗)

= Pr

µ
η̃ >

η∗ − η̄x (1− γ)

γ
|x, η = k

¶
,

where γ = σ2η/
¡
σ2ι + σ2η

¢
, which is the regression coefficient from above.
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• Notice that the expectation of the left-hand side of this expression is identical for both a

and b since η = k. But the right-hand side is not. Because the effective screening treshold

is declining in the group’s mean η̄x, the b group driver with η = k is more likely to be

stopped than the a group driver η = k .

• Another way to see this: For any true level of criminality k, E (η̃|η = k, x = a) =E (η̃|η = k, x = b)

is identical for a and b. But E (η|η̃ = k, x = b) > E (η|η̃ = k, x = a): the police will not

treat these individuals identically. The b driver is more likely to be viewed as a criminal.

• Substantive point: Although racial profiling is an efficient way to apprehend criminals, it
does impose a cost on all group b members, including the innocent. There are more Type

I errors for group b, i.e., more innocent motorists stopped. If you are a b group member,

that may seem patently unfair.

• Though this is rarely discussed, statistical discrimination does pose an equity-efficiency
trade-off.

• This may explain why economic and lay intuitions on the virtues of statistical discrimi-
nation are typically at odds: I suspect that most economists might favor statistical dis-

crimination as policy, but it is illegal.

• One possible contibutor to this discrepancy: Economists may not generally recognize that
statistical discrimination is inequitable on average, even if it is ‘fair’ at the margin.

• Another point of this example: Many important economic decisions are up/down, yes/no
decisions (stop or not, hire or not, promote or not). In these cases, the crucial choice

variable is whether some expectation exceeds a critical value, and this can have large

distributional consequences. Imagine for example in our racial profiling model that η̄a <

η∗ < η̄b and σ2i → ∞. That is, the signal η̃ is uninformative and so the decision rule

puts full weight on the group mean. In this extreme case, only b group members are

stopped, no a group criminals are apprehended, and all innocent b group members are

inconvenienced.
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