14.452 Recitation Notes:
 Solow model with CES production function
 Uzawa's Theorem (Recitation 1 on October 30, 2009)

Alp Simsek

MIT

October 30, 2009

CES Production Function

• Consider the production function:

$$F(K,L) = \left(\gamma K^{(\sigma-1)/\sigma} + (1-\gamma) L^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$
(1)

- Claim: Elasticity of substitution between K and L is constant and equal to σ .
- **Proof of claim:** Elasticity of substitution is the percentage change in relative factor inputs K/L in response to a percentage change in relative factor prices, given by: $\frac{-d \log(K/L)}{d \log(F_K/F_L)}$.
- For the function in (1), we have

$$F_{\mathcal{K}} = \gamma \mathcal{K}^{-1/\sigma} F^{1/\sigma}, \qquad (2)$$
$$F_{\mathcal{L}} = (1 - \gamma) \mathcal{L}^{-1/\sigma} F^{1/\sigma}.$$

• Using this we have:

$$\frac{F_{\kappa}}{F_{L}} = \frac{\gamma}{1 - \gamma} \left(\frac{\kappa}{L}\right)^{-1/\sigma} \Longrightarrow \frac{\kappa}{L} = \left(\frac{F_{\kappa}}{F_{L}} / \frac{\gamma}{1 - \gamma}\right)^{-\sigma}$$

 In the last expression, think of k = K/L as a function of p = F_K/F_L. It has the form k = Cp^{-σ} for some constant C. This has constant elasticity.

Special Cases

• CES approximates linear production function as $\sigma \to \infty.$ To see this, note:

$$\lim_{\sigma\to\infty} F(K,L) = \lim_{\sigma\to\infty} \gamma K + (1-\gamma) L.$$

• CES approximates the Leontieff function as $\sigma \to 0$. To see this, first suppose K > L. In this case, note:

$$\lim_{\sigma \to 0} \frac{F(K, L)}{L} = \lim_{\sigma \to 0} \left(\gamma \left(\frac{K}{L} \right)^{(\sigma-1)/\sigma} + (1 - \gamma) \right)^{\sigma/(\sigma-1)}$$
$$= \lim_{\sigma \to 0} (1 - \gamma)^{\sigma/(\sigma-1)} = 1,$$

where the second equality follows since $\frac{K}{L} > 1$ and $\frac{\sigma-1}{\sigma} \to -\infty$. This further implies that $\lim_{\sigma\to 0} F(K, L) = L$. Next suppose K < L and note that a similar argument establishes $\lim_{\sigma\to 0} F(K, L) = K$ for this case. Combining these two results, note that

$$\lim_{\sigma\to 0}F(K,L)=\min(K,L),$$

which is the Leontieff production function.

Alp Simsek (MIT)

イロト イポト イヨト イヨト

Special Cases

• CES is the Cobb-Douglas function for $\sigma = 1$. To see this, note:

$$\lim_{\sigma \to 1} \log F(K, L) = \lim_{\sigma \to 1} \frac{\log \left(\gamma K^{(1-1/\sigma)} + (1-\gamma) L^{(1-1/\sigma)}\right)}{1 - 1/\sigma}$$
$$= \lim_{\sigma \to 1} \frac{\frac{-\gamma K^{(1-1/\sigma)} \ln K / \sigma^2 - (1-\gamma) L^{(1-1/\sigma)} \ln L / \sigma^2}{\gamma K^{(1-1/\sigma)} + (1-\gamma) L^{(1-1/\sigma)}}}{-1/\sigma^2}$$
(3)
$$= \gamma \ln K + (1-\gamma) \ln L,$$

where the second line uses L'Hospital's rule and the chain rule. This further implies that

$$\lim_{\sigma \to 1} F(K, L) = \exp(\gamma \ln K + (1 - \gamma) \ln L)$$
$$= K^{\gamma} L^{1 - \gamma},$$

which is the Cobb-Douglas production function.

Alp Simsek (MIT)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CES and Assumptions 1 and 2

 CES for any σ ∈ (0,∞) satisfies Assumption 1 in the textbook, that is, it is strictly increasing and strictly concave in each input. To check concavity, note:

$$F_{\mathcal{K}} = \gamma \mathcal{K}^{-1/\sigma} \mathcal{F}^{1/\sigma} = \left(\left(\gamma + (1 - \gamma) \left(\frac{L}{\mathcal{K}} \right)^{(\sigma - 1)/\sigma} \right)^{\sigma/(\sigma - 1)} \right)^{1/\sigma}$$

This is strictly decreasing in K, that is, $F_{KK} < 0$. Similarly, $F_{LL} < 0$.

- CES for $\sigma = 1$ (Cobb-Douglas) also satisfies Assumption 2 Inada conditions.
- CES for any $\sigma \neq 1$ does **not** satisfy Assumption 2. To see this, by Eq. (2), note that:
 - For $\sigma > 1$:

$$\lim_{K\to 0} F_K = \infty, \text{ but } \lim_{K\to\infty} F_K = \gamma^{1/(\sigma-1)} > 0.$$

• For $\sigma < 1$: $\lim_{K \to \infty} F_K = 0, \text{ but } \lim_{K \to 0} F_K = \gamma^{1/(\sigma-1)} > 0.$

It violates one part or the other of the Inada condition.

- Consider CES with $\sigma \neq 1$. Despite the failure of Assumption 2, Solow model with CES has a simple characterization, but the equilibrium path may be qualitatively different than the baseline case.
- Consider Solow model in continuous time with population growth at rate n and no technological growth. Consider the accumulation of capital-labor ratio k(t) = K(t)/L(t):

$$\frac{\dot{k}}{k} = s \frac{f(k)}{k} - (\delta + n), \qquad (4)$$

where

$$f(k) = F(K, 1) = \left(\gamma k^{(\sigma-1)/\sigma} + (1-\gamma)\right)^{\sigma/(\sigma-1)}$$

а

• Consider the limit of the average productivity as $k \to \infty$, and as $k \to 0$:

For
$$\sigma > 1$$
:
$$\begin{cases} \lim_{k \to 0} \frac{f(k)}{k} = \infty \\ \lim_{k \to \infty} \frac{f(k)}{k} = \gamma^{\sigma/(\sigma-1)} \end{cases}$$
(5)
nd for $\sigma < 1$:
$$\begin{cases} \lim_{k \to 0} \frac{f(k)}{k} = \gamma^{\sigma/(\sigma-1)} \\ \lim_{k \to \infty} \frac{f(k)}{k} = 0 \end{cases}$$
.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- How are these expressions different than the case in the textbook?
- Eqs. (4) and (5) also lead to a simple characterization of equilibrium.

• For $\sigma > 1$, there are two cases. If

$$\gamma^{\sigma/(\sigma-1)} < \frac{\delta+n}{s},\tag{6}$$

then there exists a unique k^* that solves $\frac{f(k^*)}{k^*} = \frac{\delta+n}{s}$, which is the steady state capital-labor ratio. The equilibrium is globally stable.

- If the opposite of condition (6) holds, then there is sustained growth. For any k(t) > 0, we have $\dot{k}(t) > 0$ (check this) and thus $k(t) \to \infty$. Moreover, by Eq. (4), k(t) asymptotically grows at the constant rate $s\gamma^{\sigma/(\sigma-1)} (\delta + n) \ge 0$.
- Intuition: When $\sigma > 1$, capital and labor are sufficiently substitutable so that sustained growth by capital accumulation is possible. As $k \to \infty$, CES with $\sigma > 1$ is qualitatively similar to the linear production function.

イロト イポト イヨト イヨト

• For $\sigma < 1$, there are also two cases. If

$$\gamma^{\sigma/(\sigma-1)} > \frac{\delta+n}{s},\tag{7}$$

then there exists a unique k^* that solves $\frac{f(k^*)}{k^*} = \frac{\delta + n}{s}$, which is the globally stable steady state.

- If the opposite of condition (7) holds, then $\dot{k}(t) < 0$ for any k(t) > 0. Capital-labor ratio asymptotes to 0.
- Intuition: When $\sigma < 1$, capital and labor are not substitutable. If productivity is low, then output is unable to replenish the diminished capital and capital falls. As $k \to 0$, average product increases but not sufficiently (in particular, $\lim_{k\to 0} \frac{f(k)}{k} < \infty$) because capital becomes the bottleneck. Thus capital falls towards zero.
- As $k \to 0,$ CES with $\sigma < 1$ is qualitatively similar to the Leontieff production function.

Cobb-Douglas

- Recall that CES with $\sigma = 1$ gives $F(K, L) = K^{\gamma} L^{1-\gamma}$.
- This satisfies both sides of the Inada conditions, so there is always an interior steady-state k^* , which has a closed form solution.
- Cobb-Douglas is useful (at the same time very special) because it **always** has constant factor shares.
- To appreciate the generality of this result better, let us also introduce capital and labor-augmenting technology::

$$F(A_{\mathcal{K}}\mathcal{K},A_{\mathcal{L}}\mathcal{L})=(A_{\mathcal{K}}\mathcal{K})^{\gamma}(A_{\mathcal{L}}\mathcal{L})^{1-\gamma}$$

• Note that, taking the derivative of this expression with respect to K gives:

$$\frac{dF}{dK} = \frac{\gamma A_K F}{A_K K}.$$

Rewrite this to get

$$\frac{\frac{dF}{dK}K}{F} = \gamma.$$

The share of capital is always constant and equal to γ . Similarly, the share of labor is always constant and equal to $1 - \gamma$.

- Note that Cobb-Douglas has constant factor shares regardless of effective factor levels $A_K K$ and $A_L L$.
- Intuition: Elasticity of substitution is equal to 1. As the relative abundance of one factor increases by 1%, its price falls by 1%, the share of the factor remains constant.
- Note that this is not true for CES. For example as $(A_{\mathcal{K}}\mathcal{K})/(A_{\mathcal{L}}\mathcal{L}) \to \infty$, it can be seen that:
 - Share of capital in CES with $\sigma > 1$ limits to 1.
 - Share of capital in CES with $\sigma < 1$ limits to 0.

Intuition?

A B A B A B A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Uzawa's Theorem

- A representation theorem. Does not say that the production function must be of labor-augmenting form, but rather, that it has to have a representation of that form.
- Two versions of it. Formal statements in Section 2.7.3 of the textbook. I will provide a loose description and focus on intuition.
- Version 1: If K(t), Y(t), C(t) grow at constant rates g_K, g_Y, g_C for each $t \ge T$, population grows at constant rate *n*, and the production function $\tilde{F}(K(t), L(t), \tilde{A}(t))$ exhibits constant returns to scale in K(t) and L(t), then:
 - $g_{K} = g_{Y} = g_{C}.$
 - Production function has a Labor-augmenting representation, that is, there exists a technology term A(t) that grows at rate $g \equiv g_Y n$ and a production function $F : \mathbb{R}^2_+ \to \mathbb{R}$ such that

$$ilde{\mathsf{F}}\left(\mathsf{K}\left(t
ight),\mathsf{L}\left(t
ight), ilde{\mathsf{A}}\left(t
ight)
ight)=\mathsf{F}\left(\mathsf{K}\left(t
ight),\mathsf{A}\left(t
ight)\mathsf{L}\left(t
ight)
ight)$$
 for each $t\geq {\mathcal{T}}$.

• Summary: Balanced growth requires that the production function has a Labor-augmenting representation **along the equilibrium path**. Intuition on the next slide.

Uzawa's Theorem

- Intuition for part 1: If K(t), Y(t), C(t) grow at constant rates, then they should grow at the same rates, otherwise they would get out of proportion and the resource constraint of the economy would be violated.
- Intuition for part 2: Consider the production function

$$Y(t) = \tilde{F}\left(K(t), L(t), \tilde{A}(t)\right).$$
(8)

- Note that Y(t) and K(t) grow at the same rate, while L(t) grows at rate n (suppose $n < g_Y = g_K$, which is the more reasonable case).
- If technology were constant, Eq. (8) would be violated since \tilde{F} exhibits CRS: This is because, left hand size grows at rate g_Y , while the inputs grow at rates $g_K = g_Y$ (capital) and $n < g_Y$ (labor). There is a slack in the labor input, so right hand side would fall behind.
- Then, Eq. (8) implies that technology should make up for this slack => Production function can be rewritten (while preserving the CRS property) such that technology augments labor.
- This version does not ensure that the marginal returns \tilde{F}_K , \tilde{F}_L are equal to the marginal returns F_K , F_L (see Exercise 2.19 for a counter-example). There could be an economic loss of generality in considering the Labor-augmenting representation F. A stronger version on the next slide.

Alp Simsek (MIT)

Uzawa's Theorem

- Version 2: Make all assumptions of version 1, and in addition, assume the rental rate is constant: $R(t) = R^*$ for all $t \ge T$.
 - Note that this is equivalent to assuming capital has constant share, because share of capital is $\frac{R(t)K}{Y} = R^* \frac{K}{Y}$, and K and Y are growing at the same rate in view of Version 1.

Under this additional assumption, there exists a representation F(K(t), A(t)L(t)) such that $F = \tilde{F}$, and in addition:

$$\widetilde{F}_{K}(K(t), L(t), A(t)) = F_{K}(K(t), A(t)(L(t)))$$
$$\widetilde{F}_{L}(K(t), L(t), A(t)) = \frac{dF(K(t), A(t)(L(t)))}{dL(t)}.$$

• Summary: Balanced growth and constant factor shares (Kaldor facts) require that the production function has a Labor-augmenting representation in a **neighborhood of the equilibrium path**. This is sufficient for most economic purposes, e.g. we can consider first order deviations without loss of generality.

イロト イロト イヨト イヨト

Uzawa's Theorem: Intuition

• To get a better intuition for the second version, restrict attention to the production functions in which technology can be written in factor augmenting form, i.e. suppose there exists $\overline{F} : \mathbb{R}^2_+ \to \mathbb{R}$ and technology functions $A_K(t)$ and $A_L(t)$ such that

$$\tilde{F}\left(K(t),L(t),\tilde{A}(t)\right)=\bar{F}\left(A_{K}(t)K(t),A_{L}(t)L(t)\right).$$

- If effective factor ratio $A_{K}(t) K(t) / (A_{L}(t) L(t))$ changes over time, then the share of capital (and labor) would change for any production function (except for the Cobb-Douglas function). Thus, (loosely speaking) constant factor shares => effective factor proportions remain constant.
- Since effective factors grow at the same rate, Y(t) must also grow at the same rate as effective factors because

$$Y(t) = \bar{F}(A_{K}(t) K(t), A_{L}(t) L(t))$$

and \overline{F} exhibits CRS. But recall that Y(t) and K(t) grow at the same rate (from resource constraints). Thus, Y(t) and $A_K(t)K(t)$ can grow at the same rate only if $A_K(t)$ is constant. Hence, all technological progress should take labor-augmenting form.

- The argument in the previous slide does note apply for the Cobb-Douglas production function, which has constant factor shares regardless of the relative ratio of effective factors.
- To complete the argument, consider the Cobb-Douglas production function allowing for all three kinds of technological progress:

$$A_{H}(t) \left(A_{K}(t) K(t)\right)^{\alpha} \left(A_{L}(t) L(t)\right)^{1-\alpha}$$

and note that this always has a representation with Labor-augmenting technological progress:

$$K(t)^{lpha} \left(A(t) L(t)\right)^{1-lpha}$$
 where $A(t) \equiv A_H(t)^{1/(1-lpha)} A_K(t)^{lpha/(1-lpha)} A_L(t)$.

• Intuitively, with Cobb-Douglas, all kinds of technological progress are qualitatively equivalent since the elasticity of substitution is equal to one. In particular, there is always a labor-augmenting representation.

MIT OpenCourseWare http://ocw.mit.edu

14.452 Economic Growth

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.