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14.382 L5. BOOTSTRAPPING 

VICTOR CHERNOZHUKOV AND IV AN´  FERNANDEZ- ´ VAL 

Abstract. We first discuss empirical bootstrap for the sample mean, and then generalize 
the analysis to GMM. We then discuss algorithmic details. 

1. The bootstrap 

The bootstrap is a simulation method for computing standard errors and distribu­
tions of statistics of interest, which employs an estimated dgp (data generating process) 
for generating artificial (bootstrap) samples and computing the (bootstrap) draws of 
the statistic. Empirical or nonparametric bootstrap relies on nonparametric estimates 
of the dgp, whereas parametric bootstrap relies on parametric estimates of the dgp. 

In what follows we mostly focus on the empirical bootstrap (bs). 

Almost everything about empirical bootstrap can be understood by studying the boot­
strap for the sample mean statistic 

X̄ = EnXi. 

We first show how one can explore the behavior of X̄ using simulation. Consider a fixed 
law F0 with the second moment bounded from above and variance bounded away from 
zero. This characterizes the dgp sufficiently for understanding the standard behaviour of 
its sample means. As usual we will work with an i.i.d. sample 

Xn = {Xi}n 
1 i=1 

drawn from F0. In illustrations given below, we shall use standard exponential distribu­
tion as F0 and the sample size of n = 100. However, there is nothing special about this 
distribution and we could have used other distributions with bounded second moments 
and non-zero variance to illustrate our points. 

Since we know the true dgp in this running example, we can in principle compute the 
exact finite distribution of the sample mean. However, setting aside special cases suitable 
for textbook problems, the exact distribution of X̄ is not analytically tractable. Instead we 
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proceed by simulating out the finite sample distribution of X̄ . Our simulation will produce 
the exact distribution, modulo numerical error, which we take as negligible. In Figure 1 
we see the resulting finite sample distribution as well as the standard deviation (standard 
error) for this distribution. The distribution is represented by a histogram computed over 
B = 1, 000 simulated samples. The standard error here is computed over the simulated 
draws of X̄ , namely      � 

  
B �B  

¯ ¯Xb − Xb/B
b=1 b=1 

 2

/B, 

where X̄b is the mean in the 

�
bth simulated sample. This standard error is a numerical 

approximation to the standard deviation of X̄ 
Var(X ¯) = E(X − EX)2/n, 

 
which in the case of the standard exponential

 
 and n = 100 is 1/100 = 0.1. Although 

the exact distribution of X̄ is not available without knowledge of F0, we know that it is 
approximately normal by the central limit theorem. Thus, since

 
 ¯EX = EX , we have that 

¯ a
X ∼ N(EX, E(X − EX)2/n), or 

√ 
¯ a

n(X − EX) ∼ N(0, E(X − EX)2). (1.1) 

Next we consider the empirical bootstrap. Now we want to understand the behavior 
of the sample mean X̄ from an unknown dgp F with characteristics as above. Since we 
don’t know F , we cannot simulate from it. The main idea of bs is to replace the unknown 
true dgp F with a good estimate F̂ . Empirical bs uses the empirical distribution F̂ , which 
assigns point-masses of 1/n to each of the data points {X1, . . . , Xn}. In other words, F̂ is 
a multinomial variable that takes on values {X1, . . . , Xn} with equal probability 1/n. We 
proceed as above by simulating i.i.d. samples (bs samples) 

X ∗n = {Xi
∗ 
 }n 

1 i=1 

from F̂ , which is equivalent to sampling from the original data randomly with replace­
ment.1 Each bootstrap sample gives us a bootstrap draw of the sample mean 

X̄∗ X ∗ = En i . 

We repeat this procedure many times to construct many bootstrap samples and hence 
many draws of this statistic. 

1Note that they key phrase is “with replacement”. This means that some observations can be redrawn 
multiple times to form a bootstrap sample, and some may not be drawn at all. 



L5 3 

histogram for true draws

values of statistic

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2 1.3

0
40

80
14

0

se= 0.0966

histogram for BS draws

values of statistic

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2 1.3

0
40

80
14

0

se= 0.0943

Figure 1. True and bootstrap distributions of the mean of a standard expo­
nential random sample, with the sample size equal 100. Both distributions 
are approximately normal by the central limit theorem, but centered at dif­
ferent points: the true distribution is centered at the true mean and the 
second is centered at the empirical mean. 

¯In Figure 1 we see the finite sample distribution of X∗ as well as the standard deviation 
(standard error) for this distribution. An important point is that this bootstrap distribution 
is computed conditional on one draw of data X1 

n.2 

2In our monte-carlo experiment we saved the first draw of X1 
n, which was then used as data in computation 

of the bootstrap distribution. 
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X̄∗We note that not only the standard deviations of the bootstrap draws and actual 
draws X̄ look very similar, but also the overall distribution of bootstrap draws X̄∗ and 

¯actual draws X look very similar. This is not a coincidence. 

¯The mean of the bootstrap distribution of X∗ is 
n 

¯E(X̄∗ | X1 
n) = Xi/n = X. 

i=1 
¯Similarly, the standard deviation of the bootstrap distribution of X∗ is 

X∗ ¯Var( ¯ | Xn) = En(Xi − X)2/n,1 

which is simply the root of the empirical variance scaled by n. By the law of large numbers 
and some simple calculations, 

¯En(Xi − X)2 →P E(X − EX)2 , 
we have that the ratio of bootstrap standard error and the actual standard error converges 
in probability to 1. Thus, the similarity of the computed standard errors was not a coin­
cidence. Of course, we did not need the bootstrap to compute the standard errors of a 
sample mean, but we will need it very soon for less tractable cases. 

¯We can approximate the exact distribution of X∗, conditional on the data, by simulation. 
Moreover, it is also approximately normal in large samples. By the central limit theorem 

¯1) We see that the approximate distributions of n(X̄∗ − and n( ¯

and the law of large numbers, 

X̄∗ | Xn ∼ N( ¯ (Xi − X̄)2/n),1 X, En
a (1.2) 
a∼ N( X̄, E(X − EX)2/n) or 

√ 
n(X̄∗ − X) | Xn ∼ N(0, En(X − X)2)¯ ¯

1 
a (1.3) 
a∼ N(0, E(X − EX)2). 

Thus, 

√ √ 
X) | Xn X − EX),1 

¯namely N(0, En(Xi − X)2) and N(0, E(X − EX)2), are indeed close. 
2) This means that their finite-sample distributions must be close. 

We summarize the discussion of empirical bootstrap of the sample mean diagrammati­
cally: 

world dgp sample statistic approximate distribution √ a
real F0 X1 

n X̄ n(X̄ − EX) ∼ N(0, E(X − EX)2)√ aˆ X∗n X̄∗ ¯ ¯bootstrap F n(X̄∗ − X) | Xn ∼ N(0, En(Xi − X)2).1 1 

∑
√ √
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Thus, what we see in Figure 1 is not a coincidence: we conclude that the empirical boot­
strap “works” or “is valid” for the case of the sample mean. We formalize these statements 
further below. 

It is clear that the reasoning about the approximate distributions (1.1) and (1.2) extends 
to vector-valued Xi’s of fixed dimension. It is also clear that the central limit theorem 
and approximate normality play a crucial role in the above argument. The argument will 
generalize to a very large class of estimators that are approximately linear and normal. 

The argument above also suggest that once we don’t have approximate linearity and 
normality, the empirical bootstrap may fail. For example, empirical bootstrap does not 
work for weird statistics such as extreme quantiles, as shown in Figure 2. For such cases, 
subsampling or “m out of n” bootstrap methods that resample m « n observations can 
often fix the problem (see, e.g. [10]). 

The “m out of n” bootstrap methods are also useful for dealing with very large sam­
ples, when resampling a smaller number of observations brings about computational costs. 
Note that in the case of bootstrapping means, or GMM estimators more generally, modifi­
cation from “n out of n” bootstrap is straightforward and its validity follows by the same 
argument as for “n out of n” bootstrap. 

2. Bootstrapping GMM 

2.1. Some Elementary Ideas and Theory. In L4 we established that the GMM estimator 
obeys: 

a√ 
n(θ̂ − θ0) ∼ −(G'AG)−1G'AN(0, Ω) = N(0, V ). (2.1) 

We want to construct a bootstrap draw θ̂∗ using the bootstrap method that would allow us 
to mimic the behavior of 

√ 
n(θ̂ − θ0), namely 

√ a
n(θ̂∗ − θ̂) | Xn ∼ N(0, V ). (2.2)1 

    
Definition 1 (Definition of Validity of BS). A bootstrap method producing θ̂∗ condi­
tional on data Xn is valid if both (2.1) and (2.2) hold. Recall that the first statement 1 
means that 

sup  P( √ 
n(θ̂ − θ0) ∈ A) − P(N(0, V ) ∈ A) → 0, 

A∈A
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Figure 2. True and bootstrap distributions of the minimum of an expo­
nential random sample, with the sample size equal 100. Here the true dis­
tribution is approximately exponential (since minimum of an exponential 
tends to an exponential distribution). The bootstrap distribution is highly 
discrete and fails to provide a consistent distributional approximation. 

for A denoting the convex sets in Rp, and the second statement means that: 
√ 

sup P( n(θ̂∗ − θ̂) ∈ A | X1 
n) − P(N(0, V ) ∈ A) →P 0. 

A∈A 

∣∣∣ ∣∣∣
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Note that by the triangle inequality this definition implies the following “natural” defi­
nition: 

√ √ 
sup P( n(θ̂∗ − θ̂) ∈ A | X1 

n) − P( n(θ̂ − θ0) ∈ A) →P 0. 
A∈A 

The previous definition however emphasizes the link with approximate normality, which 
is key to demonstrating that the empirical bootstrap works. 

2.2. A Quick BS Method for GMM. A computationally quick way to bootstrap GMM is 
to bootstrap the average score appearing in the linear approximation to GMM. Recall that 
we obtained 

√ 
n(θ̂ − θ0) = −(G ' AG)−1G ' A 

√ 
nEnZi +oP (1), 

vector mean 

where Zi = g(Xi, θ0). Thus GMM is approximately a sample mean over the scores Zi times 
a fixed matrix −(G ' AG)−1G ' A. 

Thus we could simply bootstrap the scores Zi’s: Indeed, let Z∗n denote the empirical 1 
bootstrap draws from the sample Zn, and define the bootstrap draw θ̂∗ via the relation: 1 

¯
√ 
n(θ̂∗ − θ̂) = −(G ' AG)−1G ' A 

√ 
nEn(Zi 

∗ − Z), 
that is, 

θ̂∗ = θ̂ − (G ' AG)−1G ' AEn(Z ∗ − Z̄).i 

  
11

  

By the central limit theorem, law of large numbers, and smoothness of the Gaussian law 
we have the following properties: 

√ a
nEn(Z ∗ − Z̄) | Zn ∼ N(0, Ωn)i 1 

a∼ N(0, Ω), 

where Ωn = En(Zi − Z̄)(Zi − Z̄) ' and Ω = E(Z − EZ)(Z − EZ) ' .3 This reasoning implies 
that our quick bs method is valid: 

√ a
n(θ̂∗ − θ̂) | Xn ∼ −(G ' AG)−1G ' AN(0, Ω) = N(0, V ).1 

3Here the first and second approximations formally mean that: 

 P( ) ∈ A | Xn) − P(N(0, Ωn) ∈ A | Xn  →P 
√ ∗ Z̄∗ nEn(Z − ) 0,sup i 

A∈A

1

   P(N(0, Ωn) ∈ A | Xn 

where A denotes the convex sets in Rp. 

  
) − P(N(0, Ω) ∈ A) →P 0,sup 

A∈A
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In practice we need to replace G, A, and Zi’s with consistent estimators Ĝ, Â, and Ẑi = 
g(Xi, θ̂) such that 

Ĝ− G →P 0, Â− A →P 0, Enlg(Xi, θ̂) − g(Xi, θ0)l2 →P 0, 

and then just define the bootstrap draws via the relation: 

¯√ 
n(θ̂∗ − θ̂) = −(Ĝ' ÂĜ)−1Ĝ' Â

√ 
nEn(Ẑ

∗ − Ẑ).i 

Note that here we are bootstrapping the estimated scores. We can then arrive at the fol­
lowing conclusion. 

Theorem 1 (Validity of Quick BS for GMM). Under regularity conditions, the quick boot­
strap method is valid. That is, the quick bootstrap method approximately implements the normal 
distributional approximation for the GMM estimator. Moreover, the bootstrap variance estima­
tor V̂ = E[(θ̂∗ − θ̂)(θ̂∗ − θ̂) ' | X1 

n] is consistent, namely that V̂ − V →P 0. 

2.3. A Slow BS Method for GMM. There is also a slow bs method for GMM. Here we 
just bootstrap the whole procedure. 

Let X1 
∗, ..., X∗ denote the bootstrap sample. Let ĝ∗(θ) = Eng(Xi 

∗, θ) − ĝ(θ̂), and n 

θ̂∗ ∈ arg min ĝ∗ (θ) ' Â∗ ĝ∗ (θ). 
θ∈Θ 

Here Â∗ denote the estimator of A obtained using X1 
∗, ..., X∗ .n

Then we might think that under regularity conditions we would have the linearization 

¯√ 
n(θ̂∗ − θ̂) = −(Ĝ' ÂĜ)−1Ĝ' Â

√ 
nEn(Ẑ

∗ − Ẑ) + oP (1),i 

and then this is first-order equivalent to the quick bs method for GMM. This reasoning 
suggests the following result. 

Theorem 2 (Validity of Slow BS for GMM). Under regularity conditions, e.g. those listed in 
[6], the slow bootstrap method above is valid. That is, the slow bootstrap method approximately 
implements the normal distributional approximation for the GMM estimator. Moreover, under 
appropriate strengthening of regularity conditions, see e.g. [9], bootstrap variance estimator 
V̂ = E[(θ̂∗ − θ̂)(θ̂∗ − θ̂) ' | X1 

n] is consistent, namely that V̂ − V →P 0. 



�
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Formal proofs of these results are beyond the scope of these lectures, but they can be 
found in the theoretical literature. 

3. Algorithmic Details and Examples of Use 

A basic use of bootstrap is for estimation of standard errors and construction of the 
confidence regions. 

The following algorithm constructs estimates of the standard errors. 

(1) Obtain many bootstrap draws θ̂∗(j) of the estimator θ̂, where the index j = 
1, . . . , B enumerates the bootstrap draws. 

(2) Compute the bootstrap variance estimator 
B 

ˆ (θ̂∗(j) − ˆ θ ∗(j) − θ̂) ' V /n = B−1 θ)(ˆ . 
j=1 

Report ŝk = ( V̂kk/n)
1/2 as standard errors for θ̂k for k = 1, . . . d. 

(3) An alternative is to report standard errors based on the interquartile ranges: 
ŝk = [ck(.75) − ck(.25)]/(Φ−1(.75) − Φ−1(.25)), k = 1, . . . d, 

∗(j)where ck(a) = a-quantile of {θ̂ , j = 1, ..., B} and Φ−1 is the quantile function k 
of the standard normal distribution Φ. 

We illustrate the performance of bootstrap for GMM using the empirical example of L4. 
Here we focus on bootstrapping the 2-step GMM estimator for the first specification that 
we estimated. We can mechanically treat the data in that example as i.i.d., because the 
asymptotic distribution is the same as if we had i.i.d. sampling due to scores being an 
uncorrelated sequence. We show the histograms of the bootsrap draws θ̂∗ = (β̂∗ , α̂∗) for 
the estimator. 

The following algorithm constructs a simultaneous confidence region (rectangle) for 
all components of θ0. 

(1) Obtain many bootstrap draws 

θ̂∗(j), j = 1, . . . , B 

∑



�
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Figure 3. Bootstrap Results for GMM Estimators of the discount factor 
β and risk aversion parameter α in Hansen and Singleton’s model for the 
baseline specification with instruments given by the first lags only. The 
bootstrap standard errors are quite a bit higher than the analytical standard 
error. This occurs because of the thick upper tail. 

of the estimator θ̂, where index j enumerates the bootstrap draws. 
(2) For each k in 1, . . . , d, compute the bootstrap variance estimate 

B 

ŝ2(k) = B−1 (θ̂
∗(j) − θ̂k)2 .k 

j=1 

∑
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(Or use the estimate based on the interquartile range.) 
(3) Compute the critical value   

| ∗̂(j) − ˆc(1 − a) = (1 − a)-quantile of max θ θk|/ŝ(k), j = 1, . . . , B .k
k∈{1,...,d} 

(4) Report the joint confidence region for θ0 of level 1 − a as 
dCR1−a = ×k=1[θ̂k ± c(1 − a)ŝ(k)]. 

The justification of this confidence rectangle follows from the definition of the bootstrap 
validity, using arguments similar to those that we gave in L1 for joint confidence rectangles 
based on approximate joint normality. Indeed the result follows from the equality of the 
two events: 

√∗(j){|θ̂ − θ̂k|/s(k) ≤ c(1 − a), for each k = 1, . . . , d} = { n(θ̂∗ − θ̂) ∈ A}k 

where 
√dA = ×k=1[±c(1 − a)s(k) n] 

is a rectangular region and applying definitions of validity of bs. The true standard error 
s(k) can be replaced by the estimated standard error ŝ(k), since estimation error has a 
vanishing impact due to the smothness property of the Gaussian distribution. 

4. Extensions and Other Useful Things 

4.1. Delta Method for Bootstrap. Here we are interested in some smooth nonlinear trans­
formation β0 = f(θ0) of θ0 that can be consistently estimated by a GMM estimator θ̂ such 
that 

a√ 
n(θ̂ − θ0) ∼ N(0, Ω). 

We obtain a natural estimator of β0 by using the ”plug-in principle”, namely we plug-in 
the estimator θ̂ instead of θ0: 

β̂ = f(θ̂). 

Next we can think of bootstrapping the estimator β̂. A natural way to define the boot­
strap draw β̂∗ is to apply the transformation f to the bootstrap draw of the GMM estimator 
θ̂∗, that is 

β̂∗ = f(θ̂∗ ). 
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Bootstrapping smooth functionals of vector means provides a valid distributional 
approximation, namely that 
√ √a a
n(β̂ − β0) ∼ N(0, Vf ) and n(β̂∗ − β̂) | Xn ∼ N(0, Vf ), Vf = \f(θ0)Ω\f(θ0) ' .1 

The approximate distribution of β̂ is obtained by the delta-method:  

where θ̄ stands for a point on the line connecting θ̂ and θ0 and Ω is the variance of n(ˆ

√ 
n(β̂ − β0) = \f(θ̄) 

√ 
n(θ̂ − θ0) 

= [\f(θ0) + oP (1)] 
√ 
n(θ̂ − θ0) 

a∼ \f(θ0)N(0, Ω) = N(0, Vf ), 
Vf = \f(θ0)Ω\f(θ0) ' , 

√ 
θ − 

θ0). Here we require that \f(θ0) to have singular values bounded away from zero, since 
otherwise the normal approximation here would be poor. 

Then we can give a reasoning similar to that used above: conditional on the data X1 
n, 

√ 
n(β̂∗ − β̂) = \f(θ̄∗ ) 

√ 
n(θ̂∗ − θ̂) 

[\f(ˆ
√ 
n(θ̂∗ − ˆ= θ) + oP (1)] θ) 

a∼ \f(θ0)N(0, Ω) = N(0, Vf ), 
Vf = \f(θ0)Ω\f(θ0) ' , 

where θ̄∗ is a point on the line connecting θ̂∗ and θ̂ and Ω is the variance of 
√ 
n(θ̂ − θ0). 

4.2. Bootstrapping Dependent Data. The idea is to divide data in blocks, where depen­
dence is preserved within blocks, and then bootstrap the blocks, treating them as inde­
pendent units of observations. Here we provide a brief description of the construction of 
the bootstrap samples. We refer to [7] for assumptions and theoretical results. 

Let’s assume that we want to draw a bootstrap sample from a stationary and strongly 
¯missing sequence X1 

n. For example, Xi = −(Ĝ' ÂĜ)−1Ĝ' Â(Ẑi − Ẑ) in the quick bs for 
GMM, whereas Xn is the original sample in the slow bs for GMM. The blocks of data 1 

jcan be overlapping or non-overlapping. We focus on the non-overlapping case. Let X = 
(Xi, Xi+1, . . . , Xj ) for i < j, and s be the block size. We assume for simplicity that n = sb 
for some integer b. We construct the bootstrap sample X1 

∗, . . . , X∗ by stacking b blocks ran-n 
domly drawn from {X1 

s, Xs2 } with replacement. The block size s shoulds+1, . . . , X
sb 
s(b−1)+1

i 
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be chosen such that s → ∞ and s = O(n1/3) as n → ∞. For GMM problems, [4] and [8] 
recommend setting the block size equal to the trimming parameter in the estimation of Ω.4 

Notes 

The bootstrap method was introduced by Bradley Efron in [2]. Pioneer work in the 
development of asymptotic theory for the bootstrap includes [1] and [3]. Hall studied the 
higher order properties of the bootstrap in [5]. For applications to Econometrics, including 
GMM, see Horowitz’s chapter in Handbook of Econometrics in [7]. 

5. Problems 

Problem 1. Explain in exactly 1 page why empirical bootstrap works for the sample mean 
and why empirical bootstrap works for GMM ( you can use “quick” bootstrap for this 
purpose). 

Problem 2. Obtain bootstrap standard errors for the Hansen and Singleton example ana­
lyzed in the previous lecture. Obtain a confidence interval for the risk aversion parameter 
in that example. 

Problem 3. Obtain joint confidence bands via empirical bootstrap for the four treatment 
effects in the Pennsylvania re-employment experiment in L1. 

Problem 4. Modify algorithms in Section 3 for the case of “m out of n” bootstrap. Be 
careful with scaling. Present a brief reasoning similar to that in Section 2 arguing that “m 
out of n” bootstrap will also work for GMM. 
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