MΙ	Τ	Op	enC	ou	rse	•W	are
htt	p:	//oc	w.n	nit.	ed	u	

14.30 Introduction to Statistical Methods in Economics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set #3

14.30 - Intro. to Statistical Methods in Economics

Instructor: Konrad Menzel

Due: Tuesday, March 3, 2009

Question One

- 1. Write down the definition of a cumulative distribution function (CDF). Explain what it means in words, perhaps using an example.
- 2. Verify whether the following function is a valid CDF. If yes, draw a graph of the corresponding PDF.

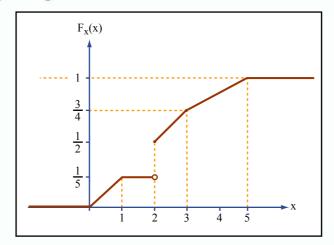



Image by MIT OpenCourseWare.

3. Verify that the following function is a valid PDF and draw the corresponding CDF.

Question Two

1. Give a p.d.f. whose c.d.f. is not continuous but is right-continuous.

True/false/uncertain: Always give a brief explanation if the statement is true, or counter-examples and a short explanation of the counter-examples if the statement is false or uncertain.

- 1. If P(A|B) > P(A) and P(A|C) > P(A), then P(A|B,C) > P(A).
- 2. A continuous p.d.f. can never take a value greater than 1.
- 3. P(A) = P(A|B)P(B) means that A and B are independent.

Question Three

(Source: Bain/Engelhardt, Ch. 2, ex. 8)

A nonnegative integer-valued random variable X has a CDF of the form $F(x) = 1 - (1/2)^{x+1}$ for x = 0, 1, 2, ... and zero if x < 0.

- 1. Find the pdf of X.
- 2. Find $P[10 < X \le 20]$.
- 3. Find P[X is even].

Question Four

- 1. Suppose that a random variable has a PDF that is proportional to x on the interval [0, 1]. Write down a formula for this PDF. What is the corresponding CDF?
- 2. Now suppose that the random variable has a CDF that is porportional to x on the interval [0, 1]. Write down a formula for this CDF. What is the corresponding PDF?

Question Five

Suppose that the joint PDF of X and Y is given by

$$f_{X,Y} = \begin{cases} kx^3y & \text{for } 0 < x < y < 1 \\ 0 & \text{elsewhere} \end{cases}.$$

1. What is the value of k?

- 2. What is the marginal PDF, $f_X(x)$, of x?
- 3. What is the value of the marginal cdf of x, $F_X(x)$, at $x = \frac{1}{2}$?
- 4. What is the conditional PDF of y (conditional on x, i.e. f(y|x))? Are X and Y independent? Explain.
- 5. What is the probability that X + Y < 1?

Question Six

(Bain/Engelhardt, Ch. 2, ex. 10)

Let X be a discrete random variable such that P[X = x] = 0 otherwise. Suppose the CDF is F(x) = .05x(1+x) at the values x = 1, 2, 3, or 4.

- 1. Sketch the graph of the CDF.
- 2. Sketch the graph of the discrete pdf, f(x).
- 3. Write down the definition of E[X] and find E[X].