

Introduction to Dynamic Optimization

Outline Today's Lecture

- discuss Matlab code
- differentiability of value function
- application: neoclassical growth model
- homogenous and unbounded returns, more applications

Review of Bounded Returns Theorems

$$(Tv)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

F is bounded and continuous and Γ is continuous and compact **Theorem 4.6.** *T* is a contraction. **Theorem 4.7.** $F(\cdot, y)$ and Γ is increasing $\Rightarrow v^*$ is increasing. If $F(\cdot, y)$ is strictly increasing, $\Rightarrow v^*$ strictly increasing. **Theorem 4.8.** *X*, Γ convex *F* is concave in $(x, y) \Rightarrow v^*$ is concave in *x*. If

 $F\left(\cdot,y
ight)$ is strictly concave $\Rightarrow v^{*}$ is strictly concave and the optimal correspondence $G\left(x
ight)$ is a continuous function $g\left(x
ight)$.

Theorem 4.9. $g_n \rightarrow g$

Differentiability

- can't use same strategy as with monotonicty or concavity: space of differentiable functions is *not* closed
- $\bullet\,$ many envelope theorems, imply differentiability of h

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$

 \bullet always if formula: if $h\left(x\right)$ is differentiable and there exists a $y^{*}\in int\left(\Gamma\left(x\right)\right)$ then

$$h'(x) = f_x(x,y)$$

...but is h differentiable?

continued...

- one approach (e.g. Demand Theory) relies on smoothness of Γ and f (twice differentiability) \rightarrow use f.o.c. and implicit function theorem
- won't work for us since $f(x, y) = F(x, y) + \beta V(y) \rightarrow \text{don't know if } f$ is once differentiable yet! \rightarrow going in circles...

Benveniste and Sheinkman

First a Lemma...

Lemma. Suppose v(x) is concave and that there exists w(x) such that $w(x) \leq v(x)$ and $v(x_0) = w(x_0)$ in some neighborhood D of x_0 and w is differentiable at x_0 ($w'(x_0)$) exists) then v is differentiable at x_0 and $v'(x_0) = w'(x_0)$.

Proof. Since v is concave it has at least one subgradient p at x_0 :

$$w(x) - w(x_0) \le v(x) - v(x_0) \le p \cdot (x - x_0)$$

Thus a subgradient of v is also a subgradient of w. But w has a unique subgradient equal to $w'(x_0)$.

Benveniste and Sheinkman

Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in int(X)$ and $g(x_0) \in int(\Gamma(x_0))$ then the fixed point of T, V, is differentiable at x and

$$V'(x) = F_x(x, g(x))$$

Proof. We know V is concave. Since $x_0 \in int(X)$ and $g(x_0) \in int(\Gamma(x_0))$ then $g(x_0) \in int(\Gamma(x))$ for $x \in D$ a neighborhood of x_0 then

$$W(x) = F(x, g(x_0)) + \beta V(g(x_0))$$

and then $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x(x_0, g(x_0))$ so the result follows from the lemma