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Treatment Effects 

So what’s the deal with all these subscripts?
 

Subscript i denotes a unit of observation (individual, household, zip 
code, state, etc) 

Define Yi1 as the outcome Y if unit i received “treatment”, and Yi0 

as the outcome Y if unit i did not receive treatment. 

This has nothing to do with whether unit i actually did receive the 
treatment! It’s a counterfactual. 
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Treatment Effects 

What we can see, and what we can’t see.
 

It turns out that expectations and averages are really mathematically
 
convenient. We sometimes use other properties of the data (e.g.
 
medians).
 

What does E [Yi0|Xi = 1] mean?
 

What about E [Yi0|Xi = 0], E [Yi1|Xi = 0], or E [Yi1|Xi = 1]? Which
 
can we estimate from the data with no further assumptions?
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Treatment Effects 

The problem with “naive” observation.
 

We often want to know E [Yi1 − Yi0|Xi = 1]. Why? 

One natural first try is to estimate expectations E [] by calculating 
averages, and then plugging them into the following expression: 

E [Yi1|Xi = 1] − E [Yi0|Xi = 0]   
= E [Yi1|Xi = 1] − E [Yi0|Xi = 1]  
+ E [Yi0|Xi = 1] − E [Yi0|Xi = 0]
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Treatment Effects 

How to get around bias.
 

We can randomize. What does that do?
 

E [Yi0|Xi = 1] = E [Yi0|Xi = 0]
 

⇒ E [Yi1|Xi = 1] − E [Yi0|Xi = 0] = E [Yi1 − Yi0|Xi = 1] 

When we can’t randomize, we look for a control group in which we 
believe that E [Yi0|Xi = 1] = E [Yi0|Xi = 0]. 
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Difference-in-Differences (DD) 

When we can’t observe everything about a group.
 

It’s often infeasible to randomize and unreasonable to think that our 
control group and treatment group are really that similar, so we 
probably don’t believe that 

E [Yi0|Xi = 0] = E [Yi1|Xi = 0] 

What if we instead assume that our treatment and control groups 
don’t have the same E [Yi0], but do follow the same counterfactual 
trends? 

Now we add the time dimension, so Yi0 turns into Yit0. We express 
our new assumption as: 

E [Yi10|Xi = 1] − E [Yi00|Xi = 1] = E [Yi10|Xi = 0] − E [Yi00|Xi = 0] 
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Difference-in-Differences (DD) 

DD to the rescue!
 

Now we want the effect of the treatment in period 1: 
E [Yi11|Xi = 1] − E [Yi10|Xi = 1] 

Check this out... 

E [Yi11|Xi = 1] − E [Yi00|Xi = 1] − 

E [Yi10|Xi = 0] − E [Yi00|Xi = 0] 

= E [Yi11|Xi = 1] − E [Yi00|Xi = 1] − 

E [Yi10|Xi = 1] − E [Yi00|Xi = 1] 

= E [Yi11|Xi = 1] − E [Yi10|Xi = 1] 

Colin Gray (14.03/14.003, Fall 2016) Recitation 2: Merging Counterfactuals and Regressions September 14, 2016 10 / 25 



 

Difference-in-Differences (DD) 

Woah! What just happened?!?!
 

We call this a difference-in-differences (DD) estimator. 

To actually estimate this, we can replace every E [] we see with a 
sample average. However, a more flexible method is to use a 
regression. 
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Treatment Effects in a Regression 

Operationalizing counterfactuals with a regression
 

We just went over how a clever choice of which expectations we 
estimate allows us to uncover treatment effects under reasonably 
weak assumptions. 

Now I’ll show you that we shouldn’t actually be calculating a bunch 
of expectations in turn... Regressions can do the same thing with 
some very useful perks! 
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Treatment Effects in a Regression 

Let’s consider an example.
 

A couple years ago, there was some hearty debate over whether the 
Affordable Care Act (ACA) would lower the wages of employees at 
small businesses, since small firms now needed to purchase health 
insurance for workers while large firms (usually) already offered health 
insurance. 

Suppose we wanted to run a regression of employees at small firms 
(100-500 employees) vs. employees at large firms (500+ employees) 
in 2014: 

Earni1 = β0 + β1Smalli1 + ei1 

Let’s work through this example using data I downloaded from the 
Current Population Survey 
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A single-variable regression...

  

Treatment Effects in a Regression 

What a single-variable regression is doing.
 

Let Y stand for earnings and X stand for treatment (being at a small 
firm). Let’s drop t until we get to the DD again, since we’re 
considering only the post-ACA world (2014, otherwise known as 
t = 1). 
Regressions mechanically give us an estimate of 
β1 = E [Yi1|Xi = 1] − E [Yi0|Xi = 0]. If you need proof, check out 
what happens when I compare a t-test (which explicitly compares the 
difference in these sample means) against a regression. 

A t-test... 
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Treatment Effects in a Regression 

What’s the problem here?
 

So the β1 in our regression is giving us 
E [Yi1|Xi = 1] − E [Yi0|Xi = 0]. Let’s imagine why that might not be 
the treatment effect we are looking for... 

Recall our term for bias: 

E [Yi0|Xi = 1] − E [Yi0|Xi = 0] 

¡3-¿ What if we think that college-educated workers often work at 
large firms, and that college-educated workers make more money 
regardless of the regulations surrounding firms of different sizes? 
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Treatment Effects in a Regression 

What it means to “control” for a variable.
 

Unlike comparing sample means directly, a regression also gives us a 
natural way to take out the effect of these omitted variables and 
therefore reduce the bias in our estimate of the treatment effect. 

Suppose we estimate the effect of college on the likelihood of working 
at a small firm (X ): 

Then we took the movements in X that seem unrelated to college, 
and regress that variable on earnings: 
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Treatment Effects in a Regression 

What it means to “control” for a variable (2).
 

This measures the relationship between working at a small firm and 
earnings without the effects of education. To do this quickly, we can 
actually put all of these variables right into the same regression: 

Now we understand how to make direct comparisons of means with a 
regression, and how regression allows us to easily include omitted 
variables to reduce bias! 
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DD in a Regression 

The Grand Finale
 

Of course, you probably think that workers at small and large firms 
have different earnings for a whole host of reasons, not just 
regulations and not just college educations. We can’t just randomize 
where people apply for jobs, and we can’t see all these differences 
between our groups. So... 

TIME FOR A DD! 
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DD in a Regression 

The Grand Finale
 

Consider the following regression. Now the observation is at the
 
person-time (so (i , t)) level:
 

Earnit = β0 + β1Smalli + β2Post2014it + β3Smalli Post2014it + uit 

Or in our alternative notation: 

Yit = β0 + β1Xi + β21[t = 1]it + β3Xi 1[t = 1]it + uit 

FYI, the notation 1[condition] stands for a variable that equals 1 
when the condition is true and 0 otherwise. Sometimes we call this a 
dummy variable. 
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DD in a Regression 

The Grand Finale
 

For now, just trust me that E [uit |Xi ] = 0 when we fit this kind of 
regression (but not necessarily all kinds of regressions!). 

Using our previous notation, E [Yi11|Xi = 1] = β0 + β1 + β2 + β3 

E [Yi00|Xi = 1] = β0 + β1 

E [Yi10|Xi = 0] = β0 + β2 

E [Yi00|Xi = 0] = β0 

Therefore our DD estimator is 

E [Yi11|Xi = 1] − E [Yi00|Xi = 1] − 

E [Yi10|Xi = 0] − E [Yi00|Xi = 0] 

= β3 
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DD in a Regression 

The Grand Finale
 

So for our purposes, a regression does all computational work for us! 
Plus, it lets us do a whole bunch of other cool things that we’ll 
continue to see throughout the semester. 

When we do the DD in our example, we see no significant effects on 
wages for small business workers after the ACA (although this design 
is far from perfect). 
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DD in a Regression 

A visual interpretation
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