3

Relative Extrema for a Function

3-1. RELATIVE EXTREMA FOR A FUNCTION OF ONE VARIABLE

Let $f(x)$ be a function of x which is defined for the interval $x_{1} \leqslant x \leqslant x_{2}$. If $f(x)-f(a) \geqslant 0$ for all values of x in the total interval $x_{1} \leqslant x \leqslant x_{2}$, except $x=a$, we say the function has an absolute minimum at $x=a$. If $f(x)-f(a)>0$ for all values of x except $x=a$ in the subinterval, $\alpha \leqslant x \leqslant \beta$, containing $x=a$, we say that $f(a)$ is a relative minimum, that is, it is a minimum with respect to all other values of $f(x)$ for the particular subinterval. Absolute and relative maxima are defined in a similar manner. The relative maximum and minimum values of a function are called relative extrema. One should note that $f(x)$ may have a number of relative extreme values in the total interval $x_{1} \leqslant x \leqslant x_{2}$.

As an illustration, consider the function shown in Fig. 3-1. The relative extrema are $f(a), f(b), f(c), f(d)$. Using the notation introduced above, we say that $f(b)$ is a relative minimum for the interval $\alpha_{b} \leqslant x \leqslant \beta_{b}$. The absolute maximum and minimum values of f occur at $x=a$ and $x=d$, respectively.

Fig. 3-1. Stationary points at points A, B, C, and D.

In general, values of x at which the slope changes sign correspond to relative extrema. To find the relative extrema for a continuous function, we first determine the points at which the first derivative vanishes. These points are called stationary points. We then test each stationary point to see if the slope changes sign. If the second derivative is positive (negative) the stationary point is a relative minimum (maximum). If the second derivative also vanishes, we must consider higher derivatives at the stationary point in order to determine whether the slope actually changes sign. In this case, the third derivative must also vanish for the stationary point to be a relative extremum

Example 3-1

(1)

$$
f(x)=\frac{1}{3} x^{3}+2 x^{2}+x+5
$$

Setting the first derivative equal to zero,

$$
\frac{d f}{d x}=x^{2}+4 x+1=0
$$

and solving for x, we obtain

$$
x_{1,2}=-2 \pm \sqrt{3}
$$

The second derivative is

$$
\frac{d^{2} f}{d x^{2}}=2 x+4=2(x+2)
$$

Then, $x=x_{1}=-2+\sqrt{3}$ corresponds to a relative minimum and $x=x_{2}=-2-\sqrt{3}$ corresponds to a relative maximum.
(2)

$$
f(x)=(x-a)^{3}+c
$$

The first two derivatives are

$$
\begin{align*}
\frac{d f}{d x} & =3(x-a)^{2} \tag{a}\\
\frac{d^{2} f}{d x^{2}} & =6(x-a)
\end{align*}
$$

Since both derivatives vanish at $x=a$, we must consider the third derivative:

$$
\frac{d^{3} f}{d x^{3}}=6
$$

The stationary point, $x=a$, is neither a relative minimum nor a relative maximum since the third derivative is finite. We could have also established this result by considering the expression for the slope. We see from (a) that the slope is positive on both sides of $x=a$. The general shape of this function is shown in Fig. E3-1.

The sufficient condition for a stationary value to be a relative extremum (relative minimum (maximum) when $d^{2} f / d x^{2}>0(<0)$) follows from a consideration of the geometry of the $f(x)$ vs. x curve in the vicinity of the stationary point. We can also establish the criteria for a relative extremum from the Taylor series expansion of $f(x)$. Since this approach can be readily extended to functions of more than one independent variable we will describe it in detail.
Suppose we know the value of $f(x)$ at $x=a$ and we want $f(a+\Delta x)$ where Δx is some increment in x. If the first $n+1$ derivatives of $f(x)$ are continuous in the interval, $a \leqslant x \leqslant a+\Delta x$, we can express $f(a+\Delta x)$ as

$$
\begin{aligned}
f(a+\Delta x)- & f(a) \\
& =\frac{d f(a)}{d x} \Delta x+\frac{1}{2} \frac{d^{2} f(a)}{d x^{2}}(\Delta x)^{2}+\cdots+\frac{1}{n!} \frac{d^{n} f(a)}{d x^{n}}(\Delta x)^{n}+R_{n} \quad(3-1)
\end{aligned}
$$

where $d^{j} f(a) / d x^{j}$ denotes the j th derivative of $f(x)$ evaluated at $x=a$, and the remainder R_{n} is given by

$$
\begin{equation*}
R_{n}=\frac{1}{(n+1)!} \frac{d^{n+1} f(\xi)}{d x^{n+1}}(\Delta x)^{n+1} \tag{3-2}
\end{equation*}
$$

where ξ is an unknown number between a and $a+\Delta x$. Equation (3-1) is called the Taylor series expansion* of $f(x)$ about $x=a$. If $f(x)$ is an n th-degree polynomial, the $(n+1)$ th derivative vanishes for all x and the expansion will yield the exact value of $f(a+\Delta x)$ when n terms are retained. In all other cases, there will be some error, represented by R_{n}, due to truncating the series at n terms. Since R_{n} depends on ξ, we can only establish bounds on R_{n}. The following example illustrates this point.

* See Ref. 1, Article 16-8.

Example 3-2

We expand $\sin x$ in a Taylor series about $x=0$ taking $n=2$. Using (3-1) and (3-2), and noting that $a=0$, we obtain

$$
\begin{equation*}
R_{2}=-\frac{(\Delta x)^{3}}{6} \cos \xi \quad 0 \leqslant \xi \leqslant \Delta x \tag{a}
\end{equation*}
$$

The bounds on $\left|R_{2}\right|$ are

$$
\begin{equation*}
\frac{|\Delta x|^{3}}{6} \cos \Delta x<\left|R_{2}\right|<\frac{|\Delta x|^{3}}{6} \tag{b}
\end{equation*}
$$

If we use (a) to find $\sin (0.2)$, the upper bound on the truncation error is $(0.2)^{3} / 6 \approx 0.0013$.
If Δx is small with respect to unity, the first term on the right-hand side of $(3-1)$ is the dominant term in the expansion. Also, the second term is more significant than the third, fourth,..., nth terms. We refer to $d f / d x \Delta x$ as the first-order increment in $f(x)$ due to the increment, Δx. Similarly, we call $\frac{1}{2} d^{2} f / d x^{2}(\Delta x)^{2}$ the second-order increment, and so on. Now, $f(a)$ is a relative minimum when $f(a+\Delta x)-f(a)>0$ for all points in the neighborhood of $x=a$, that is, for all finite values of Δx in some interval, $-\eta \leqslant \Delta x \leqslant \varepsilon$, where η and ε are arbitrary small positive numbers. Considering Δx to be small, the first-order increment dominates and we can write

$$
\begin{equation*}
f(a+\Delta x)-f(a)=\frac{d f(a)}{d x} \Delta x+\text { (second- and higher-order terms) } \tag{3-3}
\end{equation*}
$$

For $f(a+\Delta x)-f(a)$ to be positive for both positive and negative values of Δx, the first order increment must vanish, that is, $d f(a) / d x$ must vanish. Note that this is a necessary but not sufficient condition for a relative minimum. If the first-order increment vanishes, the sccond-order increment will dominate:

$$
f(a+\Delta x)-f(a)=\frac{1}{2} \frac{d^{2} f(a)}{d x^{2}}(\Delta x)^{2}+(\text { third- and higher-order terms }) \quad(3-4)
$$

It follows from (3-4) that the sccond-order increment must be positive for $f(a+\Delta x)-f(a)>0$ to be satisfied. This requires $d^{2} f(a) / d x^{2}>0$. Finally, the necessary and sufficient conditions for a relative minimum at $x=a$ are

$$
\begin{equation*}
\frac{d f(a)}{d x}=0 \quad \frac{d^{2} f(a)}{d x^{2}}>0 \tag{3-5}
\end{equation*}
$$

If the first two derivatives vanish at $x=a$, the third-order increment is now the dominant term in the expansion.
$f(a+\Delta x)+f(a)=\frac{1}{6} \frac{d^{3} f(a)}{d x^{3}}(\Delta x)^{3}+$ (fourth- and higher-order terms)
Since the third-order increment depends on the sign of Δx, it must vanish for
$f(a)$ to be a relative extremum. The sufficient conditions for this case are as follows:

Relative Minimum

$$
\begin{equation*}
\frac{d^{3} f}{d x^{3}}=0 \quad \frac{d^{4} f}{d x^{4}}>0 \tag{3-7}
\end{equation*}
$$

Relative Maximum

$$
\frac{d^{3} f}{d x^{3}}=0 \quad \frac{d^{4} f}{d x^{4}}<0
$$

The notation used in the Taylor series expansion of $f(x)$ becomes somewhat cumbersome for more than one variable. In what follows, we introduce new notation which can be readily extended to the case of n variables. First, we define Δf to be the total increment in $f(x)$ due to the increment, Δx.

$$
\begin{equation*}
\Delta f=f(x+\Delta x)-f(x) \tag{3-8}
\end{equation*}
$$

This increment depends on Δx as well as x. Next, we define the differential operator, d, as.

$$
\begin{equation*}
d()=\frac{d()}{d x} \Delta x \tag{3-9}
\end{equation*}
$$

The result of operating on $f(x)$ with d is called the first differential and is denoted by $d f$:

$$
\begin{equation*}
d f=\frac{d f(x)}{d x} \Delta x=d f(x, \Delta x) \tag{3-10}
\end{equation*}
$$

The first differential of $f(x)$ is a function of two independent variables, namely, x and Δx. If $f(x)=x$, then $d f / d x=1$ and

$$
\begin{equation*}
d f=d x=\Delta x \tag{3-11}
\end{equation*}
$$

One can use $d x$ and Δx interchangeably; however, we will use Δx rather than $d x$. Higher differentials of $f(x)$ are defined by iteration. For example, the second differential is given by

$$
\begin{equation*}
d^{2} f=d(d f)=\left[\frac{d}{d x}\left(\frac{d f}{d x} \Delta x\right)\right] \Delta x \tag{3-12}
\end{equation*}
$$

Since Δx is independent of x,

$$
\frac{d}{d x}(\Delta x)=0
$$

and $d^{2} f$ reduces to

$$
\begin{equation*}
d^{2} f=\frac{d^{2} f(x)}{d x^{2}}(\Delta x)^{2}=d^{2} f(x, \Delta x) \tag{3-13}
\end{equation*}
$$

In forming the higher differentials, we take $d(\Delta x)=0$.

Using differential notation, the Taylor series expansion (3-1) about x can be written as

$$
\begin{equation*}
\Delta f=d f+\frac{1}{2} d^{2} f+\cdots+\frac{1}{n!} d^{n} f+R_{n} \tag{3-14}
\end{equation*}
$$

The first differential represents the first-order increment in $f(x)$ due to the increment, Δx. Similarly, the second differential is a measure of the secondorder increment, and so on. Then, $f(x)$ is a stationary value when $d f=0$ for all permissible values of Δx. Also, the stationary point is a relative minimum (maximum) when $d^{2} f>0(<0)$ for all permissible values of Δx. The above criteria reduce to (3-5) when the differentials are expressed in terms of the derivatives.
Rules for forming the differential of the sum or product of functions are listed below for reference. Problems 3-4 through 3-7 illustrate their application.

$$
\begin{align*}
& f=u(x)+v(x) \\
& d f=d u+d v \\
& d^{2} f=d(d f)=d^{2} u+d^{2} v \tag{3-15}\\
& f=u(x) v(x) \\
& d f=u d v+v d u \\
& d^{2} f=u d^{2} v+2 d u d v+v d^{2} u \tag{3-16}\\
& f=f(y) \text { where } y=y(x) \\
& d f=\frac{d f}{d y} d y \tag{3-17}\\
& d^{2} f=\frac{d^{2} f}{d y^{2}}(d y)^{2}+\frac{d f}{d y} d^{2} y
\end{align*}
$$

3-2. RELATIVE EXTREMA FOR A FUNCTION OF n INDEPENDENT VARIABLES

Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a continuous function of n independent variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We define Δf as the total increment in f due to increments in the independent variables $\left(\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right)$:

$$
\begin{equation*}
\Delta f=f\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, \ldots, x_{n}+\Delta x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{3-18}
\end{equation*}
$$

If $\Delta f>0(<0)$ for all points in the neighborhood of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we say that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a relative minimum (maximum). We establish criteria for a relative extremum by expanding f in an n-dimensional Taylor series. The procedure is identical to that followed in the one-dimensional case. Actually, we just have to extend the differential notation from one to n dimensions.

We define the n-dimensional differential operator as

$$
\begin{equation*}
d=\frac{\partial()}{\partial x_{1}} \Delta x_{1}+\frac{\partial()}{\partial x_{2}} \Delta x_{2}+\cdots+\frac{\partial()}{\partial x_{n}} \Delta x_{n}=\sum_{j=1}^{n} \frac{\partial()}{\partial x_{j}} \Delta x_{i} \tag{3-19}
\end{equation*}
$$

where the increments $\left(\Delta x_{1}, \Delta x_{2} \cdots \Delta x_{n}\right)$ are independent of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The result obtained when d is applied to f is called the first differential and written as $d f$.

$$
\begin{equation*}
d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \Delta x_{j} \tag{3-20}
\end{equation*}
$$

Higher differentials are defined by iteration. For example, the second differential has the form

$$
\begin{equation*}
d^{2} f=d(d f)=\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \Delta x_{j}\right) \Delta x_{k} \tag{3-21}
\end{equation*}
$$

Since Δx_{j} are considered to be independent, (3-21) reduces to

$$
\begin{equation*}
d^{2} f=\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} \Delta x_{j} \Delta x_{k} \tag{3-22}
\end{equation*}
$$

Now, we let

$$
\begin{align*}
\mathbf{f}^{(1)} & =\left\{\frac{\partial f}{\partial x_{j}}\right\} \\
\mathbf{f}^{(2)} & =\left[\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\right] \quad j, k=1,2, \ldots, n \tag{3-23}\\
\Delta \mathbf{x} & =\left\{\Delta x_{j}\right\}
\end{align*}
$$

and the expressions for the first two differentials simplify to

$$
\begin{align*}
d f & =\Delta \mathbf{x}^{T} \mathbf{f}^{(1)} \tag{3-24}\\
d^{2} f & =\Delta \mathbf{x}^{T} \mathbf{f}^{(2)} \Delta \mathbf{x}
\end{align*}
$$

The Taylor series expansion for f about $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, when expressed in terms of differentials, has the form

$$
\begin{equation*}
\Delta f=d f+\frac{1}{2} d^{2} f+\cdots+\frac{1}{n!} d^{n} f+R_{n} \tag{3-25}
\end{equation*}
$$

We say that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is stationary when $d f=0$ for arbitrary $\Delta \mathbf{x}$. This requirement is satisfied only when

$$
\begin{equation*}
\mathbf{f}^{(1)}=0 \tag{3-26}
\end{equation*}
$$

Equation (3-26) represents n scalar equations, namely,

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}=0 \quad j=1,2, \ldots, n \tag{3-27}
\end{equation*}
$$

The scalar equations corresponding to the stationary requirement are usually

SEC. 3-2.
called the Euler equations for f. Note that the number of equations is equal to the number of independent variables.
A stationary point corresponds to a relative minimum (maximum) of f when $d^{2} f$ is positive (negative) definite. It is called a neutral point when $d^{2} f$ is either positive or negative semidefinite and a saddle point when $d^{2} f$ is indifferent, i.e., the eigenvalues are both positive and negative. This terminology was originally introduced for the two dimensional case where it has geometrical significance.
To summarize, the solutions of the Euler equations correspond to points at which f is stationary. The classification of a stationary point is determined by the character (definite, semidefinite, indifferent) of $f^{(2)}$ evaluated at the point. We are interested in the extremum problem since it is closely related to the stability problem. The extremum problem is also related to certain other problems of interest, e.g., the characteristic-value problem. In the following examples, we illustrate various special forms of f which are encountered in member system analysis.

Example 3-3

(1)

$$
\begin{aligned}
f & =f\left(y_{1}, y_{2}, \ldots, y_{r}\right) \\
y_{j} & =y_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
d f & =\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}} \Delta x_{k}=\sum_{k=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{k}}\right) \Delta x_{k}
\end{aligned}
$$

Now,

$$
d y_{j}=\sum_{k=1}^{n} \frac{\partial y_{j}}{\partial x_{k}} \Delta x_{k}
$$

It follows that

$$
d f=\sum_{j=1}^{r} \frac{\partial f}{\partial y_{j}} d y_{j}
$$

Repeating leads to

$$
d^{2} f=\sum_{j=1}^{r}\left[\frac{\partial f}{\partial y_{j}} d^{2} y_{j}+\sum_{m=1}^{r} \frac{\partial^{2} f}{\partial y_{m} \partial y_{j}} d y_{m}^{\prime} d y_{j}\right]
$$

(2)

Consider the double sum,

$$
\begin{equation*}
f=\sum_{j=1}^{s} \sum_{k=1}^{s} u_{j} w_{j k} v_{k} \tag{a}
\end{equation*}
$$

The first differential (see Prob. 3-9) has the form

$$
\begin{equation*}
d f=\sum_{j=1}^{s} \sum_{k=1}^{s}\left(d u_{j} w_{j k} v_{k}+u_{j} d w_{j k} v_{k}+u_{j} w_{j k} d v_{k}\right) \tag{b}
\end{equation*}
$$

Introducing matrix notation,

$$
\begin{align*}
& \mathbf{u}=\left\{u_{j}\right\} \quad \mathbf{w}=\left[w_{j k}\right] \quad \mathbf{v}=\left\{v_{k}\right\} \tag{c}\\
& f=\mathbf{u}^{T} \mathbf{w} \mathbf{v}
\end{align*}
$$

and letting

$$
\begin{equation*}
d \mathbf{u}=\left\{d u_{j}\right\} \tag{d}
\end{equation*}
$$

and so forth, we can write $d f$ as

$$
\begin{align*}
d f & =d\left(\mathbf{u}^{T} \mathbf{w} \mathbf{v}\right) \tag{e}\\
& =d \mathbf{u}^{T} \mathbf{w} \mathbf{v}+\mathbf{u}^{T} d \mathbf{w} \mathbf{v}+\mathbf{u}^{T} \mathbf{w} d \mathbf{v}
\end{align*}
$$

One operates on matrix products as if they were scalars, but the order must be preserved. As an illustration, consider

$$
\begin{equation*}
f=\frac{1}{2} \mathbf{x}^{T} \mathbf{a x}-\mathbf{x}^{T} \mathbf{c} \tag{f}
\end{equation*}
$$

where \mathbf{a}, \mathbf{c} are constant and \mathbf{a} is symmetrical. Noting that $d \mathbf{a}=d \mathbf{c}=0$ and $d \mathbf{x} \equiv \Delta \mathbf{x}$, the first two differentials are

$$
\begin{align*}
d f & =\Delta \mathbf{x}^{T}(\mathbf{a x}-\mathbf{c}) \tag{g}\\
d^{2} f & =\Delta \mathbf{x}^{T} \mathbf{a} \Delta \mathbf{x}
\end{align*}
$$

Comparing (g) and (3-24), we see that

$$
\begin{align*}
& \mathbf{f}^{(1)}=\mathbf{a x}-\mathbf{c} \tag{h}\\
& \mathbf{f}^{(2)}=\mathbf{a}
\end{align*}
$$

The Euler equations are obtained by setting $\mathbf{f}^{(1)}$ equal to 0

$$
\begin{equation*}
a x=c \tag{i}
\end{equation*}
$$

The solution of (i) corresponds to a stationary value of (f). If a is positive definite, the stationary point is a relative minimum. One can visualize the problem of solving the station from the point of view of finding the stationary system of a second-degree polynomial having the form $f=\frac{1}{2} \mathbf{x}^{T} \mathbf{a x}-\mathbf{x}^{T} \mathbf{c}$.
(3)

Suppose $f=u / v$. Using the fact that

$$
\begin{align*}
\frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right) & =\frac{1}{v} \frac{\partial u}{\partial x_{j}}+u \frac{\partial}{\partial x_{j}}\left(\frac{1}{v}\right) \tag{a}\\
& =\frac{1}{v}\left(\frac{\partial u}{\partial x_{j}}-\frac{u \partial v}{v} \frac{\partial x_{j}}{}\right)
\end{align*}
$$

we can write

$$
\begin{equation*}
d f=d\left(\frac{u}{v}\right)=\frac{1}{v}(d u-f d v) \tag{b}
\end{equation*}
$$

We apply (b) to

$$
\begin{equation*}
\lambda=\frac{\mathbf{x}^{\mathrm{r}} \mathbf{a x}}{\mathbf{x}^{T} \mathbf{x}} \tag{c}
\end{equation*}
$$

where \mathbf{a} is symmetrical, and obtain (see Prob. 3-5)

$$
\begin{align*}
d \lambda & =\frac{2 \Delta \mathbf{x}^{T}}{\mathbf{x}^{T} \mathbf{x}}(\mathbf{a x}-\lambda \mathbf{x}) \tag{d}\\
d^{2} \lambda & =\frac{2}{\mathbf{x}^{T} \mathbf{x}}\left(\Delta \mathbf{x}^{T} \mathbf{a} \Delta \mathbf{x}-\lambda \Delta \mathbf{x}^{T} \Delta \mathbf{x}-2 d \lambda \Delta \mathbf{x}^{T} \mathbf{x}\right)
\end{align*}
$$

Setting $d \lambda=0$ leads to the Euler equations for (c),

$$
\begin{equation*}
a x-\lambda x=0 \tag{e}
\end{equation*}
$$

The quotient $\mathbf{x}^{T} \mathbf{a x} / \mathbf{x}^{T} \mathbf{x}$, where \mathbf{x} is arbitrary and \mathbf{a} is symmetrical, is called Rayleigh's quotient. We have shown that the characteristic values of a are stationary values of Rayleigh's quotient. This property can be used to improve an initial estimate for a characteristic value. For a more detailed discussion, see Ref. 6 and Prob. 3-11.

3-3. LAGRANGE MULTIPLIERS

Up to this point, we have considered only the case where the function is expressed in terms of independent variables. In what follows, we discuss how one can modify the procedure to handle the case where some of the variables are not independent. This modification is conveniently effected using Lagrange multipliers.

Suppose f is expressed in terms of n variables, say $x_{1}, x_{2}, \ldots, x_{n}$, some of which are not independent. The general stationary requirement is

$$
\begin{equation*}
d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}=0 \tag{3-28}
\end{equation*}
$$

for all arbitrary differentials of the independent variables. We use $d x_{j}$ instead of Δx_{j} to emphasize that some of the variables are dependent. In order to establish the Euler equations, we must express $d f$ in terms of the differentials of the independent variables.
Now, we suppose there are r relations between the variables, of the form

$$
\begin{equation*}
g_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \quad k=1,2, \ldots, r \tag{3-29}
\end{equation*}
$$

One can consider these relations as constraint conditions on the variables. Actually, there are only $n-r$ independent variables. We obtain r relations between the n differentials by operating on $(3-29)$. Since $g_{k}=0$, it follows that $d g_{k}=0$. Then,

$$
\begin{equation*}
d g_{k}=\sum_{j=1}^{n} \frac{\partial g_{k}}{\partial x_{j}} d x_{j}=0 \quad k=1,2, \ldots, r \tag{3-30}
\end{equation*}
$$

Using (3-30), we can express r differentials in terms of the remaining $n-r$ differentials. Finally, we reduce $(3-28)$ to a sum involving the $n-r$ independent differentials. Equating the coefficients to zero leads to a system of $n-r$ equations which, together with the r constraint equations, are sufficient to determine the stationary points.

Example 3-4
We illustrate the procedure for $n=2$ and $r=1$:

$$
f=f\left(x_{1}, x_{2}\right)
$$

$$
g\left(x_{1}, x_{2}\right)=0
$$

The first variation is

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2} \tag{a}
\end{equation*}
$$

Operating on $g\left(x_{1}, x_{2}\right)$ we have

$$
\begin{equation*}
d g=\frac{\partial g}{\partial x_{1}} d x_{1}+\frac{\partial g}{\partial x_{2}} d x_{2}=0 \tag{b}
\end{equation*}
$$

Now, we suppose $\partial g / \partial x_{2} \neq 0$. Solving (b) for $d x_{2}$ (we replace $d x_{1}$ by Δx_{1} to emphasize that x_{1} is the independent variable.)

$$
\begin{equation*}
d x_{2}=-\left(\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}\right) \Delta x_{1} \tag{c}
\end{equation*}
$$

and substituting in (a), we obtain

$$
\begin{equation*}
d f=\left[\frac{\partial f}{\partial x_{1}}-\left(\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}\right) \frac{\partial f}{\partial x_{2}}\right] \Delta x_{1} \tag{d}
\end{equation*}
$$

Finally, the equations defining the stationary points are

$$
\begin{align*}
\frac{\partial f}{\partial x_{1}}-\left(\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}\right) \frac{\partial f}{\partial x_{2}} & =0 \tag{e}\\
g\left(x_{1}, x_{2}\right) & =0
\end{align*}
$$

To determine whether a stationary point actually corresponds to a relative extremum, we must investigate the behavior of the scond differential. The general form of $d^{2} f$ for a function of two variables (which are not necessarily independent) is

$$
\begin{align*}
d^{2} f & =d\left(\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}\right) \tag{f}\\
& =\sum_{j=1}^{2} \sum_{k=1}^{2} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} d x_{j} d x_{k}+\sum_{j=1}^{2} \frac{\partial f}{\partial x_{j}} d^{2} x_{j}
\end{align*}
$$

We reduce (f) to a quadratic form in the independent differential, Δx_{1}, using (c), and noting $d^{2} x_{1}=0$,

$$
\begin{equation*}
d^{2} f=\left(\Delta x_{1}\right)^{2}\left[\frac{\partial^{2} f}{\partial x_{1}^{2}}+2 u \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+u^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}+\left(\frac{\partial u}{\partial x_{1}}+u \frac{\partial u}{\partial x_{2}}\right) \frac{\partial f}{\partial x_{2}}\right] \tag{g}
\end{equation*}
$$

where

$$
u=-\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}
$$

The character of the stationary point is determined from the sign of the bracketed term.
An automatic procedure for handling constraint conditions involves the use of Lagrange multipliers. We first describe this procedure for the case of two variables and then generalize it for n variables and r restraints. The problem consists in determining the stationary values of $f\left(x_{1}, x_{2}\right)$ subject to the constraint condition, $g\left(x_{1}, x_{2}\right)=0$. We introduce the function H, defined by

$$
\begin{equation*}
H\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1}, x_{2}\right)+\lambda g\left(x_{1}, x_{2}\right) \tag{3-31}
\end{equation*}
$$

where λ is an unknown parameter, referred to as a Lagrange multiplier. We

SEC. 3-3.
consider x_{1}, x_{2} and λ to be independent variables, and require H to be stationary. The Euler equations for H are

$$
\begin{array}{r}
\frac{\partial H}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial g}{\partial x_{1}}=0 \\
\frac{\partial H}{\partial x_{2}}=\frac{\partial f}{\partial x_{2}}+\lambda \frac{\partial g}{\partial x_{2}}=0 \tag{3-32}\\
\frac{\partial H}{\partial \lambda}=g\left(x_{1}, x_{2}\right)=0
\end{array}
$$

We suppose $\partial g / \partial x_{2} \neq 0$. Then, solving the second equation in (3-32) for λ, and substituting in the first equation, we obtain

$$
\begin{equation*}
\lambda=-\frac{\partial f}{\partial x_{2}} / \frac{\partial g}{\partial x_{2}} \tag{3-33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}-\left(\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}\right) \frac{\partial f}{\partial x_{2}}=0 \tag{3-34}
\end{equation*}
$$

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=0 \tag{er}
\end{equation*}
$$

Equations (3-34) and (e) of the previous example are identical. We see that the Euler cquations for H are the stationary conditions for f including the effect of constraints.

Example 3-5

$$
\begin{aligned}
& f=3 x_{1}^{2}+2 x_{2}^{2}+2 x_{1}+7 x_{2} \\
& g=x_{1}-x_{2}=0
\end{aligned}
$$

We form $H=f+\lambda g$,

$$
H=3 x_{1}^{2}+2 x_{2}^{2}+2 x_{1}+7 x_{2}+\lambda\left(x_{1}-x_{2}\right)
$$

The stationary requirement for H treating x_{1}, x_{2}, and λ as independent variables is

$$
\begin{array}{r}
6 x_{1}+2+\lambda=0 \\
4 x_{2}+7-\lambda=0 \\
x_{1}-x_{2}=0
\end{array}
$$

Solving this system for x_{1}, x_{2} and λ we obtain

$$
\begin{aligned}
\lambda & =4 x_{2}+7 \\
x_{1} & =x_{2}=-9 / 10
\end{aligned}
$$

This procedure can be readily generalized to the case of n variables and r constraints. The problem consists of determining the stationary values of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, subject to the constraints $g_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$, where $k=1,2, \ldots, r$. There will be r Lagrange multipliers for this case, and H has
the form

$$
\begin{equation*}
H=f+\sum_{k=1}^{r} \lambda_{k} g_{k}=H\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \tag{3-35}
\end{equation*}
$$

The Euler equations for H are

$$
\begin{align*}
\frac{\partial f}{\partial x_{i}}+\sum_{k=1}^{r} \lambda_{k} \frac{\partial g_{k}}{\partial x_{i}} & =0 & & i=1,2, \ldots, n \tag{3-36}\\
g_{k} & =0 & & k=1,2, \ldots, r \tag{3-37}
\end{align*}
$$

We first solve r equations in $(3-36)$ for the r Lagrange multipliers, and then determine the n coordinates of the stationary points from the remaining $n-r$ equations in $(3-36)$ and the r constraint equations (3-37). The use of Lagrange multipliers to introduce constraint conditions usually reduces the amount of algebra.

REFERENCES

1. Thomas, G. B., Jr., Calculus and Analytical Geometry, Addison-Wesley Publishing Co., Reading, Mass., 1953.
2. Courant; R., Differential and Integral Calculus, Vol. 1, Blackie, London, 1937.
3. Courant, R., Differential and Integral Calculus, Vol. 2, Interscience Publishers, New York, 1936.
4. Hancock, H., Theory of Maxima and Minima, Dover Publications, New York, 1960.
5. Apostol, T. M., Mathematical Analysis, Addison-Wesley Publishing Co., Reading, Mass., 1957.
6. Crandall, S. H., Engineering Analysis, McGraw-Hill, New York, 1956.
7. Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall, New York, 1952.

PROBLEMS

3-1. Determine the relative extrema for
(a) $f(x)=2 x^{2}+4 x+5$
(b) $f(x)=-2 x^{2}+8 x+10$
(c) $f(x)=a x^{2}+2 b x+c$
(d) $f(x)=x^{3}+2 x^{2}+x+10$
(e) $f(x)=\frac{1}{3} x^{3}+2 x^{2}+4 x+15$
(f) $f(x)=(x-a)^{4}+(x-a)^{2}$
(g) $f(x)=\frac{1}{3} a x^{3}+\frac{1}{2} b x^{2}+c x+d$

3-2. Expand $\cos x$ in a Taylor series about $x=0$, taking $n=3$. Determine the upper and lower bounds on R_{3}.

3-3. Expand $(1+x)^{1 / 2}$ in a Taylor series about $x=0$ taking $n=2$. Determine upper and lower bounds on R_{2}.

3-4. Find $d f$ and $d^{2} f$ for
(a) $f=x^{2}+2 x+5$
(b) $f=3 x^{3}+2 x^{2}+5 x+6$
(c) $f=x^{2} \sin x$
(d) $f=\cos y$ where $y=x^{3}$

3-5. Let $f=u(x) / v(x)$. Show that

$$
\begin{aligned}
d f & =\frac{1}{v}(d u-f d v) \\
d^{2} f & =\frac{1}{v}\left(d^{2} u-f d^{2} v\right)-2 \frac{d v d f}{v}
\end{aligned}
$$

3-6. Let u_{1}, u_{2}, u_{3} be functions of x and $f=f\left(u_{1}, u_{2}, u_{3}\right)$. Determine $d f$. 3-7. Suppose $f=u(x) w(y)$ where $y=y(x)$. Determine expressions for $d f$ and $d^{2} f$. Apply to
(a) $u=x^{3}-x$
(b) $w=\cos y$
(c) $y=x^{2}$

3-8. Find the first two differentials for the following functions:
(a) $f=x_{1}^{3}+3 x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}$
(b) $f=3 x_{1}^{2}+6 x_{1} x_{2}+9 x_{2}^{2}+5 x_{1}-4 x_{2}$

3-9. Consider $f=u v$, where
and

$$
u=u\left(y_{1}, y_{2}\right) \quad v=v\left(y_{1}, y_{2}\right)
$$

Show that

$$
y_{1}=y_{1}\left(x_{1}, x_{2}\right) \quad y_{2}=y_{2}\left(x_{1}, x_{2}\right)
$$

$$
d f=d(u v)=u d v+v d u \quad d^{2} f=u d^{2} v+2 d u d v+v d^{2} u
$$

Note that the rule for forming the differential of a product is independent of whether the terms are functions of the independent variables (x_{1}, x_{2}) or of dependent variables.

3-10. Classify the stationary points for the following functions:
(a) $f=3 x_{1}^{3}+3 x_{2}^{2}-9 x_{1}+12 x_{2}-10$
(b) $f=3 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1}+7 x_{2}$
(c) $f=3 x_{1}^{2}+6 x_{1} x_{2}+3 x_{2}^{2}+2 x_{1}+2 x_{2}$
(d) $f=3 x_{1}^{2}+6 x_{1} x_{2}+4 x_{2}^{2}+2 x_{1}+7 x_{2}$
(e) $f=3 x_{1}^{3}+6 x_{1} x_{2}+4 x_{2}^{2}+2 x_{1}$
$x_{1} x_{2}+3 x_{2}^{2}-3 x_{1}$

3-11. Consider Rayleigh's quotient,

$$
\hat{\lambda}=\frac{\mathbf{x}^{T} \mathbf{a x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{\mathbf{x}^{T} \mathbf{a}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

where \mathbf{x} is arbitrary. Since \mathbf{a} is symmetrical, its characteristic vectors are linearly independent and we can express \mathbf{x} as

$$
\mathbf{x}=\sum_{j=1}^{n} c_{j} \mathbf{Q}_{j}
$$

where $\mathbf{Q}_{j}(j=1,2, \ldots, n)$ are the normalized characteristic vectors for \mathbf{a}.
(a) Show that

$$
\lambda=\frac{\sum_{j=1}^{n} \lambda_{j} c_{j}^{2}}{\sum_{j=1}^{n} c_{j}^{2}}
$$

(b) Suppose \mathbf{x} differs only slightly from \mathbf{Q}_{k}. Then, $\left|c_{j}\right| \ll\left|c_{k}\right|$ for $j \neq k$. Specialize (a) for this case. Hint: Factor out λ_{k} and c_{k}^{2}.
(c) Use (b) to obtain an improved estimate for λ.

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{ll}
3 & 1 \\
1 & \frac{3}{2}
\end{array}\right] \\
& \mathbf{x} \approx\{1,-3\}
\end{aligned}
$$

The exact result is

$$
\lambda=1 \quad \mathbf{x}=\{1,-2\}
$$

3-12. Using Lagrange multipliers, determine the stationary values for the following constrained functions:
(a) $f=x_{1}^{2}-x_{2}^{2}$
$g=x_{1}^{2}+x_{2}=0$
(b) $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
$g_{1}=x_{1}+x_{2}+x_{3}-1=0$
$g_{2}=x_{1}-x_{2}+2 x_{3}+2=0$
3-13. Consider the problem of finding the stationary values of $f=\mathbf{x}^{T} \mathbf{a x}=$ $\mathbf{x}^{T} \mathbf{a}^{T} \mathbf{x}$ subject to the constraint condition, $\mathbf{x}^{T} \mathbf{x}=1$. Using (3-36) we write

$$
H=f+\lambda g=\mathbf{x}^{T} \mathbf{a} \mathbf{x}-\lambda\left(\mathbf{x}^{T} \mathbf{x}-1\right)
$$

(a) Show that the equations defining the stationary points of f are

$$
\mathbf{a x}=\lambda \mathbf{x} \quad \mathbf{x}^{T} \mathbf{x}=1
$$

(b) Relate this problem to the characteristic value problem for a symmetrical matrix.
3-14. Suppose $f=\mathbf{x}^{T} \mathbf{x}$ and $g=1-\mathbf{x}^{T} \mathbf{a x}=0$ where $\mathbf{a}^{T}=\mathbf{a}$. Show that the Euler equations for H have the form

$$
\mathbf{a x}=\frac{1}{\lambda} \mathbf{x} \quad \mathbf{x}^{T} \mathbf{a x}=1
$$

We see that the Lagrange multipliers are the reciprocals of the characteristic values of \mathbf{a}. How are the multipliers related to the stationary values of f ?

4

Differential Geometry of a Member Element

The geometry of a member element is defined once the curve corresponding to the reference axis and the properties of the normal cross section (such as area, moments of inertia, etc.) are specified. In this chapter, we first discuss the differential geometry of a space curve in considerable detail and then extend the results to a member element. Our primary objective is to introduce the concept of a local reference frame for a member.

4-1. PARAMETRIC REPRESENTATION OF A SPACE CURVE

A curve is defined as the locus of points whose position vector* is a function of a single parameter. We take an orthogonal cartesian reference frame having directions X_{1}, X_{2}, and X_{3} (see Fig. 4-1). Let \bar{r} be the position vector to a point

Fig. 4-1. Cartesian reference frame with position vector $\vec{r}(y)$.

* The vector directed from the origin of a fixed reference frame to a point is called the position vector. A knowledge of vectors is assumed. For a review, see Ref. 1.

