
 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY  SPRING 2007 
 

5.92 Energy Environment and Society 
(a Project Based First Year Subject supported by the d'Arbeloff Program) 

--------------------------------------------------------------------------------------- 
Session 1.4. Energy Basics (continued)     
 

1. Discussion of team projects and project selections 
2. Summary of thermodynamics concepts and applications 

 
Readings and Assignments 
 

D. Goodstein, "Out of Gas" (Norton, 2004): Chapter 2, "Energy Myths and a Brief 
History of Energy", pp. 41 – 56  

Practice Problems on First and Second Laws of Thermodynamics (due Feb. 21) 
 
Supplementary recommended text (on library reserve) 
 
 J.B. Fenn, "Engines, Energy, and Entropy" (W.H. Freeman and Co., 1982) 
-------------------------------------------------------------------------------------------------------------------- 
Thermodynamics is about the flow of energy 
Thermodynamics was first developed to explain how much heat could be used 

to do work … eventually we learned that these laws apply to every material 
and energy transformation everywhere in the universe! 

 
 •  Describes macroscopic properties of equilibrium systems 

 (you don't need to know anything about atoms and molecules – but it helps!) 
 •  Entirely Empirical 
 (cannot be proven logically, but can be derived using statistical mechanics) 
 •  Built on Four Laws and “simple” mathematics 

 (but we will not assume you have had 18.02!) 
 
0th Law  →  Defines Temperature (T) 
 "The common sense Law" 
 
1st Law  →  Defines Energy (U), Heat (q), Work (w) 
 "You can break even, but you can't win" 
 
2nd Law  →  Defines Entropy (S) 
 "You have to go to 0 K to break even" 
 "Everything wants to be as imperfect as possible" 
 
3rd Law  →  Gives Numerical Value to  Entropy 
 "You can’t get to 0 K" (so you can never break even) 
 
          These laws are UNIVERSALLY VALID, they cannot be circumvented. 



 "From BTU's and calories 
 Producing foot-pounds, ergs, and joules 
 Heat Engines must, to serve our needs 
 Obey inexorable rules." 

-- J.B. Fenn, "Engines, Energy, and Entropy" 
 
Definitions: 
 

• System: The part of the Universe that we are interested in 
  (everything inside the boundary) 

• Surroundings: The rest of the Universe 
  (everything else outside the boundary) 

• Boundary: The surface dividing the System from the Surroundings 
 

BOUNDARY

SYSTEM 

SURROUNDINGS 
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In order to describe a system we have to specify a small number of macroscopic 
properties ("state variables"), such as 
 Pressure p   Energy U (or E) 
 Volume V   Enthalpy H 
 Temperature T   Entropy S 
 
Temperature is defined by the Zeroth Law of Thermodynamics: 

Thermal Equilibrium (when heat stops flowing) 
 

B B A B A  
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A 

When a hot object is placed in thermal contact with a cold object, heat flows 
from the warmer to the cooler object. This continues until they are in thermal 
equilibrium (no more heat flow). We say, at this point, that both bodies have 
the same “temperature”.  
This intuitively straightforward idea is formalized in the 0th Law of 
thermodynamics and is made practical through the development of 
thermometers and temperature scales.  
 
≡≡≡≡≡   ZERO’th LAW of Thermodynamics   ≡≡≡≡≡ 
 
   If            and              are in thermal equilibrium and 
 
                 and              are in thermal equilibrium,  

A B 

 
then          and            are in thermal equilibrium. 

B 
A 

C 
C   

 
  acts like (is) a thermometer, and          ,            , and             are all at the       
same temperature.  

B A B C 
 
For thermodynamics calculations, we have to use the Absolute (Kelvin) 
temperature scale:   

T (K) = T(°C) + 273.15 



Work, Heat, and the First Law  
•  Work:                   w  = F • l       
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applied constant force  distance l  

 p ext

ext p 
Expansion work 
 

extAF p=  
 

w = -(pextA) l = - pext ΔV 
 

convention: w > 0 means that the surroundings do work to the 
system (compression, ΔV < 0).  

 If the system does work on the surroundings 
(expansion, ΔV > 0), then w < 0 .  

 
Work is not a property of the state of the system! 

dVpw ext−=    means not an exact differential 
which means that 
the integral     2

1 extdVw p= −∫ depends on the path!!! 
See Non Lecture # 1 for an example calculation of the path dependence of w 

•  Heat: “q” 
 

The quantity that flows between the system and the surroundings, 
which results in a change of temperature of the system and/or the 
surroundings.  

 
Sign convention: If heat enters the system, then q is positive.   
 

Remember this: w > 0 if work done on system 
   q > 0 if heat added to system 
   w and q are both forms of energy 
Units of q and w: 1 calorie = heat needed to raise 1 g H2O by 1°C at T = 15°C 
   1 Joule = 4.184 calories 
   1 BTU = 252 calories = 1,055 Joules 
   1 "quad" = 1015 BTU = 1.055 exaJoules 
Heat capacity amount of q needed to raise a substance's temperature by ΔT 
  heat capacity of water = 1 cal K-1 g-1 = 4.184 J K-1 g-1 = 75.3 J K-1 mole-1



Non Lecture #1: Path dependence of work 
Example: assume a reversible process so that pext = p (p same as pext everywhere and 

at all times inside the system) 
 

Ar (g, p1, V1) = Ar (g, p2, V2) 
Compression  V1 > V2  and   p1 < p2

initial final

compressionp1, V1

p2, V2

pext=p2

pext=p1

 
Two paths:  
(1) First    V1  → V2   at   p = p1    (2) First  p1  → p2   at   V = V1   
 then    p1  → p2   at    V = V2     then   V1  → V2   at   p = p2   
 
Ar(g, p1, V1) = Ar(g, p1, V2) = Ar(g, p2, V2)        Ar(g, p1, V1) = Ar(g, p2, V1) = Ar(g, p2, V2) 
 path (1) path (2) 

final

initial

path
(2)

path (1)

p

V

p2

p1

V1V2
 

2 2

1 2
(1)

V V

V Vext extdV dVw p p−= −∫ ∫
( )

( )

2

1
2 1

1 2(1)

1 1

1

    

        

V

V
V V

V V

dVp p

w p

−

−

= −= −

=

∫   

1

1
(2)

V

V extdVw p= − ∫
( )

( )

2

1

2

1
2 1

1 2(2)

2 2

2

    

        

V

V

V

V

ext

V V

V V

dV

dV

p

p p

w p

−

−

−

= −= −

=

∫

∫  

  
   (Note w > 0, work is done on system to compress it)  
 

(1) (2)w w≠ !!! (because p1 ≠ p2) 

 

Note for the closed cycle  [path (1)] - [path (2)],  – 0d w ≠∫  
         closed cycle 
w is not a state function  you cannot write w = f(p,V) 
___________________________________________________________ 
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The equivalence of work and heat was demonstrated by Joule's experiments on 
raising the temperature of a known amount of water (see Goodstein, Chapter 2, 
for detail) 

(a)  with only heat    

    

QuickTimeGraphics dare needed

 T1  →  T2

 
(b)  with only work (weight falls, propeller rotates, viscous friction heats water): 

     
QuickTime™Graphics decare needed to

  T1  →  T2

The First Law of Thermodynamics: Conservation of Energy 

Mathematical statement:  

– –

– –

dU d q d w
or

U q w
or

d q d w

= +

Δ = +

− =∫ ∫

 

  
                               

          0

system surroundings

systemuniverse surroundings

U q w U q

U U U

Δ = + Δ = − −

⇒ Δ = Δ + Δ =

w
 

 
U is a "state function", value depends only on properties of system (p, V, T, etc.) 
 
Enthalpy H = U + pV, useful to measure energy changes in processes taking place 
at constant pressure 
For example, the ΔH of vaporization of water at p = 1 atmosphere = 2400 J/gram = 
43.2 kJ/mole. 
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Clausius statement of 1st Law: 
 
     The energy of the universe is conserved.  
 
The First Law tells us that a properly designed engine can run in a cycle by 
converting heat into useful work. The work obtained cannot exceed the heat. But 
can all of the heat be converted into work? 
Heat reservoir A very large system of uniform T. This T of the reservoir does not 

change regardless of the amount of heat added or withdrawn.  Also 
called heat bath. Real systems can come close to this idealized 
definition. 

Different statements of the Second Law 
 
Kelvin: It is impossible for any system to operate in a cycle that takes heat from 

a hot reservoir and converts it to work in the surroundings without 
simultaneously transferring some heat to a colder reservoir. 

 
T1 (hot) T1 (hot)

T2 (cold)

q

-w

q1

q2

w

q > 0 (heat in)
w < 0 (work out)
–w = q

q1 > 0
w < 0
q2 < 0 (heat out)
q1 = –w – q2

 
Arrows show direction of actual energy flow, q and w are positive when heat is added to 
system or work is done on system. 
 
Clausius: It is impossible for any system to operate in a cycle that takes heat 

from a cold reservoir and transfers it to a hot reservoir without at the 
same time converting some work into heat. 

 
Clausius’ statement is similar to Kelvin’s, but for an engine operating in the opposite 
direction (as a refrigerator or heat pump).  The two statements of the second law may 
be proven to be equivalent by connecting a Kelvin heat engine to a Clausius heat pump, 
then showing that violation of either statement will lead to violation of the other. 
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q2 > 0
w > 0 (work in)
q1 < 0
–q1 = w + q2

w

T1 (hot) T1 (hot)

T2 (cold)

q1 q1

q2

q2 > 0 (heat in)
q1 < 0 (heat out)
–q1 = q2

T2 (cold)
q2

 
 

Alternative Clausius statement: All spontaneous processes are irreversible (e.g. 
heat flows from hot to cold spontaneously and irreversibly). 
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d q– –
rev d q

∫ ∫= <0 and irrev 0 
T T

 
d– qrev

T∫ is a state function = dS∫ → dS = d– qrev

T
 

 

S ≡ ENTROPY 

 
Kelvin and Clausius statements are specialized to heat engines. 
Mathematical statement seems very abstract. 
Link them through analytical treatment of a heat engine.  It turns out that the Carnot1 
Cycle is both a fundamental standard against which all other cycles may be evaluated, 
and all properties of a Carnot Cycle may be calculated.  (See Non-Lecture 2 for explicit 
calculation of work and heat changes for a Carnot cycle in which the working fluid is an 
ideal gas. The overall result does not depend on the choice of the working fluid – see 
Non Lecture 3. ) 
 
 
 
 
 
 
 
 
 

                                                 
1 Nicholas Leonhard Sadi Carnot. b. 1796. Published "Reflections on the Motive Power of Heat 
and on Machines" (his only publication) in 1824. d. of cholera in 1832. 



The Carnot Cycle  - an idealized heat engine in which all paths are reversible 
T1 (hot)

T2 (cold)

q1

q2

w

1

3cold isotherm (T2)

adiabat expansionadiabat
compression

2

4

hot isotherm (T1)
>

 
1 → 2 isothermal expansion at T1(hot) ∆U = q1 + w1 (q1 > 0, w1 < 0) 
2 → 3 adiabatic expansion (q = 0) ∆U = w′1 (w′1 < 0) 
3 → 4 isothermal compression at T2(cold) ∆U = q2 + w2 (q2 < 0, w2 > 0) 
4 → 1 adiabatic compression (q = 0) ∆U = w′2 (w′2 > 0) 
 
The signs of q1, q2, and w cannot all be positive.  When run as a heat engine (converts 
heat input to work output), we will find that q1 > 0, q2 and w < 0.  When run as a heat 
pump (converts work input to transfer of heat from a cold to a hot reservoir), q2 and w 
are > 0, q1 < 0. 
 
1st Law ( )1 2 1 1 2 20dU q q w w w w′ ′⇒ = ⇒ + = − + + +∫  
 

Efficiency as heat engine = ε = total work out
heat in from hot reserv. at T1

=
− w1 + ′w1 + w2 + ′w2( )

q1

= q1 + q2

q1

=1+ q2

q1

 
Efficiency     

ε =1+ q2

q1

=1− T2

T1

= T1 −T2

T1

but ε →100% only as T2 → 0 K  

For a heat engine (Kelvin) 
(heat from hot reservoir converted to 
work by system) 

 
 
q1 > 0, w < 0, T2 < T1

 

Total work out =-w=εq1 =
T1 − T2

T1

⎛
⎝⎜

⎞
⎠⎟

q1 ⇒ −w( ) < q1  

 
Note:  In the limit T2 → 0 K, (-w) → q1 and ε → 100% conversion of heat into work. 
Can we cool the cold reservoir to T2 = 0 K ? 
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For a heat pump (i.e. refrigerator) (Clausius) 

(pumps heat from cold reservoir q2 > 0 to 
hot reservoir q1 < 0) 

 
q2 > 0, w > 0, T2 < T1

Total work in = w =
T2 − T1

T1

⎛
⎝⎜

⎞
⎠⎟

q1  q1 < 0, w > 0, T2 – T1 < 0 

But 
q1

T1

= − q2

T2

⇒ w = T2 − T1

T1

⎛

⎝
⎜

⎞

⎠
⎟

−T1q2

T2

⎛

⎝
⎜

⎞

⎠
⎟ = T1 − T2

T2

⎛

⎝
⎜

⎞

⎠
⎟q2

 

 
But in the limit T2 → 0 K, w → ∞.  This means it takes an infinite amount of work to 
extract heat from a reservoir at 0 K.  This implies that  0 K cannot be reached (a form of 
the Third Law ). 
 
Finally, the entropy of an isolated system never decreases.   
 
 (A) The system is isolated and irreversibly 

(spontaneously) changes from [1] to [2] 
 
(B) The system is brought into contact with a 

heat reservoir and reversibly brought back 
from [2] to [1] 

 

(A) irreversible (isolated) 

 
Path (A):  qirrev = 0  (isolated) 

(B) reversible (not isolated) 
1

2

– –
2

1

qClausius: 0
T

irrevd d q
T

≤ ⇒∫ ∫

=0!

–
1

2

–
1

1 22

2 1

0

Definition of S for the 1 2 change of state of an isolated system:

0

0

rev

rev

d q
T

d q S S S
T

S S S

+ ≤

Δ →

⇒ = − = −Δ ≤

∴ Δ = − ≥

∫

∫

 

 
This gives the direction of spontaneous change! 
If S2 > S1, isolated system goes spontaneously and 
irreversibly from 1 → 2. 

For isolated systems 
² S > 0 Spontaneous, irreversible process
² S = 0 Reversible process
² S < 0 Impossible!  No exceptions!

⎧

⎨
⎪

⎩
⎪
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Non Lecture 2: Carnot Cycle for an Ideal Gas 
 

1 → 2 
isotherm 

(expansion @ T1) 
² U = 0; q1 = –w1 = pdV

1

2∫ = RT1 ln V2

V1

⎛

⎝
⎜

⎞

⎠
⎟ > 0  

2 → 3 adiabatic 
(expansion) q = 0; ′w1 = CV T2 − T1( )< 0  

Reversible adiabatic ⇒ T2

T1

⎛

⎝
⎜

⎞

⎠
⎟ = V2

V3

⎛

⎝
⎜

⎞

⎠
⎟

γ−1

<1 

3 → 4 
isotherm 

(compression at 
T2 < T1) 

² U = 0; q2 = –w2 = pdV
3

4∫ = RT2 ln V4

V3

⎛

⎝
⎜

⎞

⎠
⎟ < 0  

4 → 1 adiabatic 
(compression) q = 0; ′w2 = CV T1 − T2( )> 0  

Reversible adiabatic ⇒ T1

T2

⎛

⎝
⎜

⎞

⎠
⎟ = V4

V1

⎛

⎝
⎜

⎞

⎠
⎟

γ−1

> 1 

 

q2

q1

=
T2 ln V4 V3( )
T1 ln V2 V1( )

…here comes the crucial trick!

V1

V4

⎛

⎝
⎜

⎞

⎠
⎟

γ−1

= T2

T1

⎛

⎝
⎜

⎞

⎠
⎟ = V2

V3

⎛

⎝
⎜

⎞

⎠
⎟

γ−1

⇒ V4

V3

⎛

⎝
⎜

⎞

⎠
⎟ = V1

V2

⎛

⎝
⎜

⎞

⎠
⎟ ⇒ q2

q1

= −T2

T1

 

 

  
–

1 2

1 2

qor 0 0revq d q
T T T

+ = ⇒ =∫ we have a state function! 

 
This provides a link between (ideal gas) heat engines and the mathematical statement 
of the Second Law!  But it is not a proof of the Second Law.  It tells us that entropy, 
efficiency, and reversibility are inter-related via the Second Law. 
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Non-Lecture 3: Entropy and the Clausius Inequality 
 
We want to show that the efficiency of any reversible engine is the same as that for a 
reversible Carnot engine where the gas in the Carnot engine is ideal.  We do this by 
connecting the general engine to the Carnot engine, one acting as a heat engine 
(using heat from a hot reservoir to produce work) and the other acting as a heat 
pump or refrigerator (using work to pump heat from a cold to a hot reservoir).  The 
two engines connected together produce no net work.  Work output from the heat 
engine is used as work input to the heat pump.  First we set up the Carnot engine as 
a heat engine and run the general engine in reverse as a heat pump.  We assume 
that the general engine is less efficient than the Carnot engine and show that this 
assumption is in violation of the Second Law.  Then we set up the general engine as 
a heat engine and run the Carnot engine in reverse as a heat pump.  We assume 
that the general engine is more efficient than the Carnot engine and show that this 
assumption violates the Second Law.  Since the general engine cannot be less or 
more efficient than the Carnot engine (because each would violate the Second Law), 
the efficiencies are identical. 
 

T2 (cold)

T1 (hot)

q1

q2

q′1

q′2

Carnot
cycle

w = –w′

general
(reverse)

 
 

Right Engine: ′ε =
work out

heat from T1  in
=

− ′w
′q1

= 1−
T2

T1

 

 

Left Engine  ε =
work in

heat to T1  out
=

w
−q1

 

 
Since w = –w', the total work from the two engines = w' + w = 0 
 

We assume that ε < ′ε ⇒ − ′w
′q1

> w
−q1

(both quantities are positive)

w
′q1

> w
−q1

(– ′w  replaced by w)

1
′q1

> 1
−q1

⇒ ′q1 < −q1  (both sides divided by w > 0)
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We add q1 to both sides of inequality 
    q1 + q′1 < q1 – q1 = 0 
Net heat has been input into hot reservoir without net work!  Assumption ε < ε' must be 
invalid.   
 
Now reverse the direction of operation of both engines. 
 

T2 (cold)

T1 (hot)

q1

q2

q′1

q′2

Carnot
(reverse)

–w = w′

general

 
 

Right Engine: ′ε =
work in

heat to T1  out
=

′w
− ′q1

= 1−
T2

T1

 

 

Left Engine  ε =
work out

heat from T1  in
=

−w
q1

 

 
Since –w = w', the total work from the two engines = w' + w = 0 

We assume that ε > ′ε ⇒
−w
q1

>
′w

− ′q1

(both quantities are positive)

−w
q1

>
−w
− ′q1

1
q1

>
1

− ′q1

⇒ q1 < − ′q1

 

We add –q1 to both sides of the inequality and multiply both sides by –1, reversing the 
sense of the inequality. 
 
    q1 + q′1 <  0 
 
Net heat is input into hot reservoir without net work!  Assumption ε > ε′ must be invalid.  
Thus we have shown that both ε < ε′ and ε > ε′ lead to violation of the second law.  Thus 
ε = ε′. 
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	Thermal Equilibrium (when heat stops flowing)



