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Lecture #34: Wavepacket Dynamics 

See pages 626-635 of SDDM for today, pages 635-649 and 659-667 for Wednesday. We mostly do
frequency domain spectroscopy, yet we talk about dynamics. But eigenstates are stationary! How are 
dynamics encoded in a frequency domain spectrum? 

Today: discuss the famous equivalence: 

The Franck-Condon distribution in an absorption spectrum is identical to the Fourier transform
of the autocorrelation function for a wavepacket created by transferring the initial state from
potential surface g (or V″) to surface e (or V′) at t = 0. The autocorrelation function describes 
the evolution of the g-state wavefunction on the e-state surface, where it is not an eigenstate. 

The two pictures are mathematically equivalent, but yield quite different sets of insights. Key is
that the wavepacket picture is inherently “local” and “ball-and-springs mechanistic”, whereas the
traditional frequency domain picture is inherently “global” and quantum mechanical. 

The stationary phase condition provides the reason why the localized picture emerges and why
the autocorrelation function picture gives insights. 

Next lecture: discuss various measures of dynamics 

Absorption Spectrum is FT of autocorrelation function. 

I(ω) = ∫ ∞ 
e−iωt ψ(t) ψ(0) dt 

−∞ 

* Derive this by manipulating familiar stuff
* Interpret 

I(ω) = ∑ δ ω−ω jI j ( )
j 

spectrum is collection of lines of intensity Ij located at ω j = (Ev′ j − Ev′′ )  ≡ E j  

(define E = 0 at Ev″ ) 

e µ g 
Ij = M 

2 qv′ jv′′ FC factor times M 
2 M = 

= M* Mv′′ v′ j v′ j v′′ 
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ψ(0) ≡ v′′ M = ∑ v′ j Mv′ j v′′ 
j 

ψ(0) = M* v′′ = M* ∑ v′′ v′ j v′ j
j 

v′ eiE j t ψ(t) = M* ∑ v′′ v′ j
j 

iE jt return ψ(t) ψ(0) e Mv′′ v′′ v′ j v′ j v′ k v′ k = M* ∑to this 
j,k 

= (M*M)∑eiE jt  v′′ v′′ v′ j v′ j v′ k v′ k
j,k 
δkj 

=| M |2 ∑ qv′ jv′′e
iE jt  

j 
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∞ 
ψ(t) ψ(0) dt =| M |2 ∫∑ qv′ jv′′e

i(ω j −ω)tdt ∫−∞ 
e− iωt 

v′ j 

=| M |2 δ ω j − ω ∑ q ( )v′ jv′′
v′ j 

=
 Ij∑ δ ω j − ω ( )
j 

(Ev′ j − Ev′′ ) 

So we have shown that the absorption spectrum, I(ω), is FT of autocorrelation function. 

But what is this autocorrelation function? 

ψ(t) ψ(0) Mv′′ v′ j v′ j e
+ iω j t v′′ = M* ∑ 

j 

= [M* M]v′′ ]∑ v′ j v′ j e+ iω j t [ v′′ 

j
 
e+iH′t /  

propagation of ψ(0) on upper potential surface 

Now we have a new picture → spectrum is generated by a sequence of events occurring for a perfectly
defined initial state propagating on unknown potential surface. 
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1 
∆ E / h 

* Recurrences at T = 1 = classical period = 
ν 

1 = 
ωec 

* Initial decay — gradient of potential is Force 

How long does it take for a wavepacket of spatial width ∆ to move a distance ∆/2 away from its initial
location? Call this time t1/2. 
[Actually, this is an over-simplification. The motion of the wavepacket occurs in both coordinate and

dV−

momentum space, respectively at rates of order t2 and t.] 

dR
F =
 = mR (equation of motion) 

⎤ 

R(0) = R< (inner turning point) 
R(0) = 0 

1 dV
R(t) = − 

m dR R< 

t integrated equation of motion with respect to t 

R(t) = − 
1 dV 

2m dR R< 

t2 + R< integrated again 

t1/2  related to dV R t( 1/2 ) − R(0) ≡ ∆/ 2 What is t1/2 ?dR 
1/2 

−2m ∆
⎡
⎛
 ⎞
 = t1/2 ⎢
⎢


dV 
dR 

⎥
⎥


⎜
⎜⎝


⎟
⎟⎠


2

⎣
 ⎦


For a harmonic upper electronic state potential 
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V (R) = 
1 k′ (R − R′ e )2′
2 

k′ = m (2πcω′ e )2 

dV′ )2 

dR 
= −k′ (R − R′ e ) = −m (2πcω′ e (R − R′ e )F = − 

∆ 
1/2 ⎡ −m ∆ ⎤

1/2 
1 = ⎥ =t1/2 ⎢

⎣−m (2πcω′ e )2 (R − R′ e ) ⎦ 2πcω′ e R − R′ e 

If the initial wavepacket is created from v″ = 0 of the initial state, R(t = 0) = (R<  or R> ) = R′′ e , 

∆ = R′′ > (v′′ = 0) − R′′ < (v′′ = 0) 

1 ⎡ h ⎤
1/2 

∆ = 
π ⎣⎢ mcω′′ e ⎦⎥ 

ω″e is initial state frequency, ω′e is final state frequency. Note that the time required for the wavepacket
to move half its spatial width from its initial location at an upper state turning point is 

t1/2 ∝ ω
1 

′ e
R′′ e − R′ e 

−1/2 . 

Questions 

1. V(R) = 
1 k R − Re )

2 

2 
( 

Two Harmonic oscillators of identical k but different Re. 

vs.


small large
displacement displacement 

which ψ(t) ψ(0)  decays faster? 

What does this imply about I(ω)? [use time dependent approach instead of old FC envelope
ideas to answer.]
Does this give correct limiting behavior when ∆Re = 0? 
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2. For 2 vibrational modes of same R′ e − R′′ e , which will give wider FC region from v″ = 0? 

large ω′ or small ω′?


fast decay slow decay 

small width large width 

3. For 2 modes of same ω′, but different R′ e − R′′ e , which will give longer FC progression? 

4. pictures of OODR. 
V* 

Ve 

Vg V″ = 0 

What does this picture tell you about the optimal timing and center frequencies for excitation from state
g to state * via state e? 
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