5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #30: What is in a Character Table and How do we use it?

Last time

matrix representations of symmetry operators representations of group — same multiplication table as symmetry operators characters of matrix representations (all we need for most applications) generate representation from convenient set of objects (basis vectors)

GOT

reduction of reducible representations

generate and reduce reducible representations

how do we get and use the fancy labels to the right of characters

 $(a, b, c) \leftrightarrow (x, y, z)$ [conventions for x, y, z,

 $I_a \le I_b \le I_c$ for a, b, c]

selection rules: pure rotation and rotation-vibration and Raman. nature of various types of vibration.

]	$D_{3\mathrm{h}}$					7		(rotational level	
		totally						symmetries and	
		symmetric						perturbations)	
								Rotations, Translations,	
/								IR selection rules,	
								p–orbitals	Polarizability, Raman
(electronic selection rules	Selection Rules,
$\overline{\}$		Е	$2C_{3}(z)$	$3C_2(\perp)$	$\sigma_h(xy)$	$2S_{3}(z)$	$3\sigma_v$	(magnetic dipole)	d-orbitals
7	A'_1	1	1	1	1	1	1		$x^2 + y^2, z^2$
	A'_2	1	1	-1	1	1	-1	R _z	
	E'	2	-1	0	2	-1	0	(x,y)	$(x^2 - y^2, xy)$
	A_1''	1	1	1	-1	-1	-1		
	A_2''	1	1	-1	-1	-1	1	Z	
	Е″	2	-1	0	-2	1	0	$(\mathbf{R}_{x},\mathbf{R}_{y})$	(xy, yz)

order of group $g = 12 = \sum_{v} n_{v}^{2}$ (n_v is order of v-th irreducible representation) equal to number of classes: 1 + 2 + 3 + 1 + 2 + 3

 R_z "belongs to" A'_2 , z (or T_z) belongs to A''_2

Fall, 2008

Use picture to generate representation

(x,y) means symmetry operation transforms x into y (must generate 2D representation using x and y) <u>Selection rules</u>: integrand must contain totally symmetric representation.

$$\int \psi_i \widehat{O} p \psi_f d\tau \neq 0$$

Direct Product: $\Gamma(\psi_i) \otimes \Gamma(\widehat{Op})$ must include $\Gamma(\psi_f)$ because direct product of any irreducible representation with itself contains the totally symmetric representation.

$$\chi^{\Gamma_{i}\otimes\Gamma_{j}} \equiv \left(\chi^{i}(R_{1})\chi^{j}(R_{1}),\chi^{i}(R_{2})\chi^{j}(R_{2}),\ldots\right)$$

Example: $E' \otimes E'' = (4 \ 1 \ 0 \ -4 \ -1 \ 0)$ (the irreducible representations must all be ")

shortcuts

$A \otimes B = B$	′⊗″=″
g⊗u=u	$1 \otimes 2 = 2$

Decomposition of (4 1 0 –4 –1 0):

$$\begin{aligned} \mathbf{a}_{A_{2}'} &= \frac{1}{12} [4 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 1 + 0 - 4 \cdot 1 \cdot 1 - 1 \cdot 2 \cdot 1 + 0] = 0\\ \mathbf{a}_{E''} &= \frac{1}{12} [4 \cdot 2 \cdot 1 + 1 \cdot 2 (-1) + 0 - 4 \cdot 1 \cdot (-2) - 1 \cdot 2 \cdot 1 + 0] = 1\\ \mathbf{a}_{A_{1}'} &= 1\\ \mathbf{a}_{A_{2}'} &= 1 \end{aligned}$$

So now we know how to work out all selection rules.

Best to work specific example of D_{3h} molecule BCl_3 .

Generate 3N dimensional representation.

$$\chi^{red} = \underbrace{\frac{E \quad C_3 \quad C_2(\perp) \quad \sigma_h \quad S_3 \quad \sigma_v}{12 \quad 1 + 2 \cos \frac{2\pi}{3} \quad 2(1-2) \quad 4(2-1) \quad -1+2 \cos \frac{2\pi}{3} \quad 2(2-1)}$$

$$\chi^{red} = \chi^{A_1'} + 3\chi^{E'} + 2\chi^{A_2'} + \chi^{A_2'} + \chi^{E'} \quad (\text{total of 12 degrees of freedom})$$
3 translations $E' \leftrightarrow (x,y)$
 $A''_2 \leftrightarrow z$
3 rotations $A'_2 \leftrightarrow R_z$
 $E'' \leftrightarrow (R_x, R_y)$
This leaves 6 vibrations
 $\chi^{VIB} = \chi^{A_1'} + 2\chi^{E'} + \chi^{A_2'} \qquad (\text{total of 6})$

(four normal modes, two are doubly degenerate)

pseudo rotation

We can go further - to figure out bend vs. stretch or mixed character of the 4 normal modes (especially when there is only 1 mode in a symmetry class)

$$\chi^{\text{red}} = \begin{pmatrix} 3 & 0 & 1 & 3 & 0 & 1 \end{pmatrix} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{\text{red}} = \begin{pmatrix} 3 & 0 & 1 & 3 & 0 & 1 \end{pmatrix} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{\text{red}} = \begin{pmatrix} 3 & 0 & 1 & 3 & 0 & 1 \end{pmatrix} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{\text{red}} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{A'_{1}} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{A'_{1}} = \chi^{A'_{1}} + \chi^{E'}$$

$$\chi^{A'_{1}} = \chi^{A'_{1}} + \chi^{A'_{1}$$

(compression of one angle rotates around either clockwise or counterclockwise, but no real rotation)

Now we are ready to work out selection rules for vibration-rotation spectra

$$\Gamma^{(v_1, v_2, v_3, v_4)} = \left[\chi^1\right]^{v_1} \otimes \left[\chi^2\right]^{v_2} \otimes \left[\chi^3\right]^{v_3} \otimes \left[\chi^4\right]^{v_4}$$
$$\Gamma^{(0,0,0)} = A'_1$$

	$\Gamma' \otimes \Gamma'' =$	
Selection rules for fundamental bands	$(1\ 0\ 0\ 0) \leftarrow (0\ 0\ 0\ 0)$	A'_1
	(0 1 0 0)	A_2''
	(0 0 1 0)	E'
	(0 0 0 1)	E'

in order for transition integral to be nonzero, need $\Gamma^{x, y, \text{ or } z} = \Gamma' \otimes \Gamma''$

mode	#1	A'_1	IR	forbidden	
	#2	A_2''	Z	IR allowed	
	#3 or 4	E'	(x, y)	IR allowed	

But how will the rotational transitions behave?

	$\Delta K = 0$	weak Q
\perp	$\Delta K = \pm 1$	strong Q

General procedure

 $\begin{array}{l} 3N \text{ dimensional } \chi^{\text{RED}} \\ \text{find (and classify) all normal mode symmetries} \\ (x,y,z) \leftrightarrow (a,b,c) \\ & \uparrow \text{ highest order } C_n \\ \text{activity and rotational type of each vibrational fundamental} \\ \text{Raman} \end{array}$

Figures from Bernath:

Image removed due to copyright restrictions. Please see: Bernath, P. F. *Spectra of Atoms and Molecules*. New York, NY: Oxford University Press, 1995. Images removed due to copyright restrictions. Please see: Bernath, P. F. *Spectra of Atoms and Molecules*. New York, NY: Oxford University Press, 1995.

The E-A₁ energy level diagram is given in **Figure 7.51**. The energy level structure of an E vibrational state is complicated by the presence of a first order Coriolis interaction between the two components. The selection rules are $\Delta K = \pm 1$ and $\Delta J = 0, \pm 1$. Note also that for $\Delta K = +1$ the transitions connect to the $(+\ell)$ stack while for $\Delta K = -1$ they connect with the $(-\ell)$ stack. The transition can again be represented by a superposition of sub-bands. Notice how the sub-bands do not line up as they do for a parallel transition, but they spread out (**Figure 7.52**). Each sub-band is separated by approximately $2[A(1-\zeta)-B]$. This gives rise to a characteristic pattern of nearly equally spaced Q branches (**Figure 7.53**).

Images removed due to copyright restrictions. Please see: Bernath, P. F. *Spectra of Atoms and Molecules*. New York, NY: Oxford University Press, 1995. Images removed due to copyright restrictions. Please see: Bernath, P. F. *Spectra of Atoms and Molecules*. New York, NY: Oxford University Press, 1995.

What if BCl_3 were not D_{3h} (planar)?

wye

Truth table

point	# of normal	pure rotational	# of IR active	Rotational type of	Raman active
group	modes	spectrum type	fundamentals	IR fundamentals	fundamentals
D_{3h}	4		3	1-c, 2-a,b	
C _{3v}	4	c-oblate	4	2-c, 2-a,b	
		a-prolate			
C_{2v}	6	asymmetric hybrid a,b	6	3-a, 2-b, 1-c	
		or b,c			

For D_{3h} here will be **two** \perp polarized (E') fundamentals

There will be **one** \parallel polarized (A_2'') fundamental

There will be **one** forbidden (i.e. not observable by IR) fundamental (A'_1)

(a,b)-type \perp polarized (i.e. $\Delta K = \pm 1$) oblate top vibrational spectrum (the two E' modes in BCl₃)

$$E_{JK}^{ROT} = BJ(J+1) + (C-B)K^2$$
 $C-B < 0$

Strong Q branches. Q branch "spikes" dominate band profile.

$$K' - K''$$
^RQ₀(J) ≈ (C - B)[1² - 0²] (since ΔB is small)
^RQ₁(J) ≈ (C - B)[2² - 1²]
^PQ₁(J) ≈ (C - B)[0² - 1²]
etc.

(c)-type || polarized (i.e. $\Delta K = 0$) oblate top vibrational spectrum. (the one A_2'' out-of plane bend from BCl₃)

weak Q branches, except at $J \approx K$ and high K $\Delta K = 0$ only. All ${}^{Q}Q_{K}(J)$ tend to pile up as spike at band origin.

Looks very similar to \perp type oblate band except that branches are labeled in reverse order and more spread out (less overlap of K sub-bands) because usually $|A - B|_{prolate} \gg |B - C|_{oblate}$

a-type (||) prolate $\Delta K = 0$, weak Q except at low $J \approx K$

Asymmetric tops:Resemble symmetric top when $J \approx K$ More complicated because $E_{J_{K_aK_c}}$ can't be separated into J-dependent and K-
dependent additive terms.

Special simplification for linear molecules.

zero-point level has only $\ell = 0$ vibrational angular momentum.

There is no K projection of J.

Bending mode is $\pi \leftrightarrow \ell = 1$.

|| type $\Delta \ell = 0$ (anti-symmetric stretch), \perp type $\Delta \ell = \pm 1$ (bend)

<u>Benzene</u>				thru atoms ↓	thru bonds ↓		h = 24				
Е	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2''$	i	$2S_3$	$2S_6$	$\sigma_{ m h}$	$3\sigma_{d}$	$3\sigma_{v}$
36	0	0	0	_4	0	0	0	0	12	0	+4
	D_{6h}				D_6						
$A_{1_g} \frac{1}{24} (=$	<u>12</u> +12+	12+36)	= 2	$\frac{1}{12}$ [3	36-12]=	2					
$A_{2g} = \frac{1}{24}$	(36+12-	+12- <u>12</u>)) = 2	$\frac{1}{12}[3]$	36+12]=	4					
$B_{1g} = \frac{1}{24}$	(36-12-	-12-12)	=0	$\frac{1}{12}[36-12] = 2$							
$B_{2g} = \frac{1}{24} (36 + 12 - \underline{12} + 12) = 2$				$\frac{1}{12}(36+12) = 4$							
$E_{1g} = \frac{1}{24} [72 - 24] = 2$				$\frac{1}{12}$ [7]	72]=6						
$E_{2g} = \frac{1}{24}$	[72+24]	= 4		$\frac{1}{12}$ [7]	72]=6						
$E_{2u} = \frac{1}{24}$	[72+-24	4]=2									
$A_{1u} = \frac{1}{24}$	(36-12-	-12-12)	0 = 0								
$A_{2u} = \frac{1}{24}$	(36+12	-12+12) = 2								

