MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#30: What is in a Character Table and How do we use it?

Last time
matrix representations of symmetry operators
representations of group - same multiplication table as symmetry operators
characters of matrix representations (all we need for most applications)
generate representation from convenient set of objects (basis vectors)
GOT
character table
irreducible representations \longleftarrow generalization of odd/even
notation symmetry label for multi-dimensional integral with several non-commuting symmetry operators
reduction of reducible representations
generate and reduce reducible representations
how do we get and use the fancy labels to the right of characters
$(\mathrm{a}, \mathrm{b}, \mathrm{c}) \leftrightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})$ [conventions for $\mathrm{x}, \mathrm{y}, \mathrm{z}$,
$\mathrm{I}_{\mathrm{a}} \leq \mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{c}}$ for $\left.\mathrm{a}, \mathrm{b}, \mathrm{c}\right]$
selection rules: pure rotation and rotation-vibration and Raman.
nature of various types of vibration.
Example:

order of group $g=12=\sum_{v} n_{v}^{2}$ (n_{v} is order of v-th irreducible representation) equal to number of classes: $1+2+3+1+2+3$
R_{z} "belongs to" $\mathrm{A}_{2}^{\prime}, \mathrm{z}\left(\right.$ or T_{z}) belongs to $\mathrm{A}_{2}^{\prime \prime}$

Use picture to generate representation

show with cartoons why $\mathrm{R}_{\mathrm{z}} \leftrightarrow \mathrm{A}_{2}^{\prime}$ from these characters
(x, y) means symmetry operation transforms x into y (must generate 2 D representation using x and y)
Selection rules: integrand must contain totally symmetric representation.

$$
\int \psi_{\mathrm{i}} \hat{\mathrm{O}} \mathrm{p} \psi_{\mathrm{f}} \mathrm{~d} \tau \neq 0
$$

Direct Product: $\quad \Gamma\left(\psi_{\mathrm{i}}\right) \otimes \Gamma(\widehat{\mathrm{O} p})$ must include $\Gamma\left(\psi_{\mathrm{f}}\right)$ because direct product of any irreducible representation with itself contains the totally symmetric representation.

$$
\chi^{\mathrm{r}_{\mathrm{i}} \otimes \mathrm{r}_{j}} \equiv\left(\chi^{\mathrm{i}}\left(\mathrm{R}_{1}\right) \chi^{\mathrm{j}}\left(\mathrm{R}_{1}\right), \chi^{i}\left(\mathrm{R}_{2}\right) \chi^{\mathrm{j}}\left(\mathrm{R}_{2}\right), \ldots\right)
$$

Example: $\quad E^{\prime} \otimes E^{\prime \prime}=(410-4-10) \quad$ shortcuts (the irreducible representations must all be ")
$\mathrm{A} \otimes \mathrm{B}=\mathrm{B}$
${ }^{\prime} \otimes \prime=\prime$
$\mathrm{g} \otimes \mathrm{u}=\mathrm{u} \quad 1 \otimes 2=2$

Decomposition of (4 10-4-10):
$\mathrm{a}_{\mathrm{A}_{2}^{\prime}}=\frac{1}{12}[4 \cdot 1 \cdot 1+1 \cdot 2 \cdot 1+0-4 \cdot 1 \cdot 1-1 \cdot 2 \cdot 1+0]=0$
$\mathrm{a}_{\mathrm{E}^{\prime \prime}}=\frac{1}{12}[4 \cdot 2 \cdot 1+1 \cdot 2(-1)+0-4 \cdot 1 \cdot(-2)-1 \cdot 2 \cdot 1+0]=1$
$\mathrm{a}_{\mathrm{A}_{1}^{\prime \prime}}=1$
$\mathrm{a}_{\mathrm{A}_{2}^{\prime \prime}}=1$
So now we know how to work out all selection rules.
Best to work specific example of $\mathrm{D}_{3 \mathrm{~h}}$ molecule BCl_{3}.

Generate 3 N dimensional representation.

$\chi^{\text {red }}=$| E | C_{3} | $\mathrm{C}_{2}(\perp)$ | σ_{h} | S_{3} | σ_{v} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | $1+2 \cos \frac{2 \pi}{3}$ | $2(1-2)$ | $4(2-1)$ | $-1+2 \cos \frac{2 \pi}{3}$ | $2(2-1)$ |

12	0	-2	4	-2	2

$\chi^{\text {red }}=\chi^{\mathrm{A}_{1}^{\prime}}+3 \chi^{\mathrm{E}^{\prime}}+2 \chi^{\mathrm{A}_{2}^{\prime \prime}}+\chi^{\mathrm{A}_{2}^{\prime}}+\chi^{\mathrm{E}^{\prime \prime}} \quad$ (total of 12 degrees of freedom)
3 translations $\mathrm{E}^{\prime} \leftrightarrow(\mathrm{x}, \mathrm{y})$

$$
\mathrm{A}_{2}^{\prime \prime} \leftrightarrow \mathrm{z}
$$

3 rotations $\quad A_{2}^{\prime} \leftrightarrow R_{z}$ $\mathrm{E}^{\prime \prime} \leftrightarrow\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$

This leaves 6 vibrations

$$
\chi^{\mathrm{VIB}}=\chi^{\mathrm{A}_{1}^{\prime}}+2 \chi^{\mathrm{E}^{\prime}}+\chi^{\mathrm{A}_{2}^{\prime}} \quad(\text { total of } 6)
$$

(four normal modes, two are doubly degenerate)
We can go further - to figure out bend vs. stretch or mixed character of the 4 normal modes (especially when there is only 1 mode in a symmetry class)
$\Gamma^{\text {RED }}$ from $\int_{\text {(stretches only) }}^{12}$
$\chi^{\text {red }}=\left(\begin{array}{llllll}3 & 0 & 1 & 3 & 0 & 1\end{array}\right)=\chi^{\mathrm{A}_{1}^{\prime}}+\chi^{\mathrm{E}^{\prime}}$
pure stretch mixed bend and stretch (only A_{1}^{\prime}) (there is another E^{\prime})

Thus $\quad A_{1}^{\prime} \quad$ pure symmetric stretch
$A_{2}^{\prime \prime} \quad$ pure bend (out of plane - because $\chi\left(\sigma_{h}\right)=-1$)
$2 \mathrm{E}^{\prime} \quad$ mixed bend and stretch

(compression of one angle rotates around either clockwise or counterclockwise, but no real rotation)
Now we are ready to work out selection rules for vibration-rotation spectra

$$
\begin{aligned}
\Gamma^{\left(v_{1}, v_{2}, v_{3}, v_{4}\right)} & =\left[\chi^{1}\right]^{v_{1}} \otimes\left[\chi^{2}\right]^{v_{2}} \otimes\left[\chi^{3}\right]^{v_{3}} \otimes\left[\chi^{4}\right]^{v_{4}} \\
\Gamma^{(0,0,0,0)} & =\mathrm{A}_{1}^{\prime}
\end{aligned}
$$

fundamentals	$\Gamma^{(1000)}$	A_{1}^{\prime}	overtones	$\Gamma^{(2000)}$	A_{1}^{\prime}
	$\Gamma^{(0100)}$	$\mathrm{A}_{2}^{\prime \prime}$		$\Gamma^{(0200)}$	A_{1}^{\prime}
	$\Gamma^{(0010)}$	E^{\prime}		$\Gamma^{(0020)}$	
	$\Gamma^{(0001)}$	E^{\prime}		$\Gamma^{(0002)}$	
$\mathrm{E}^{\prime} \otimes \mathrm{E}^{\prime}=(4$	041	(A_{1}^{\prime}	$\left.\mathrm{A}_{2}^{\prime}+\mathrm{E}^{\prime}\right)$		

Selection rules for fundamental bands

$$
\begin{aligned}
& \Gamma^{\prime} \otimes \Gamma^{\prime \prime}= \\
& \left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \leftarrow\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

in order for transition integral to be nonzero, need $\Gamma^{x, y, \text { or } z}=\Gamma^{\prime} \otimes \Gamma^{\prime \prime}$

mode	$\# 1$	$\mathrm{~A}_{1}^{\prime}$	IR	forbidden
	$\# 2$	$\mathrm{~A}_{2}^{\prime \prime}$	z	IR allowed
	$\# 3$ or 4	E^{\prime}	(x, y)	IR allowed

But how will the rotational transitions behave?

So mode \#1
\#2

$$
\begin{array}{ll}
\mathrm{A}_{1}^{\prime} & \frac{\partial \mathrm{M}_{\mathrm{j}, \mathrm{abc}}}{\partial \mathrm{Q}_{1}}=0 \\
\mathrm{~A}_{2}^{\prime \prime} & \frac{\partial \mathrm{M}_{\mathrm{j}, \mathrm{z}}}{\partial \mathrm{Q}_{2}} \neq 0 \\
\mathrm{E}^{\prime} & \frac{\partial \mathrm{M}_{\mathrm{j}, \mathrm{x} \text { or } \mathrm{y}}}{\partial \mathrm{Q}_{3 \text { or } 4}} \neq 0
\end{array}
$$

\#3
for BCl_{3} an oblate symmetric top

$$
\mathrm{z}=\mathrm{c} \quad \mathrm{x}, \mathrm{y}=(\mathrm{a}, \mathrm{~b})
$$

mode \#2 fundamental is c type
\| $\quad \Delta \mathrm{K}=0 \quad$ weak Q
$\perp \quad \Delta \mathrm{K}= \pm 1 \quad$ strong Q
General procedure
3 N dimensional $\chi^{\text {RED }}$
find (and classify) all normal mode symmetries
$(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leftrightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c})$
\uparrow highest order C_{n}
activity and rotational type of each vibrational fundamental Raman

Figures from Bernath:

Image removed due to copyright restrictions.
Please see: Bernath, P. F. Spectra of Atoms
and Molecules. New York, NY: Oxford
University Press, 1995.

Images removed due to copyright restrictions.
Please see: Bernath, P. F. Spectra of Atoms
and Molecules. New York, NY: Oxford University Press, 1995.

The E- A_{1} energy level diagram is given in Figure 7.51. The energy level structure of an E vibrational state is complicated by the presence of a first order Coriolis interaction between the two components. The selection rules are $\Delta \mathrm{K}= \pm 1$ and $\Delta \mathrm{J}=0, \pm 1$. Note also that for $\Delta \mathrm{K}=+1$ the transitions connect to the $(+\ell)$ stack while for $\Delta K=-1$ they connect with the $(-\ell)$ stack. The transition can again be represented by a superposition of sub-bands. Notice how the sub-bands do not line up as they do for a parallel transition, but they spread out (Figure 7.52). Each sub-band is separated by approximately $2[\mathrm{~A}(1-\zeta)-\mathrm{B}]$. This gives rise to a characteristic pattern of nearly equally spaced Q branches (Figure 7.53).

Images removed due to copyright restrictions.
Please see: Bernath, P. F. Spectra of Atoms
and Molecules. New York, NY: Oxford
University Press, 1995.

Images removed due to copyright restrictions.
Please see: Bernath, P. F. Spectra of Atoms and Molecules. New York, NY: Oxford University Press, 1995.

What if BCl_{3} were not $\mathrm{D}_{3 \mathrm{~h}}$ (planar)?

Truth table

point group	\# of normal modes	pure rotational spectrum type	\# of IR active fundamentals	Rotational type of IR fundamentals	Raman active fundamentals
$\mathrm{D}_{3 \mathrm{~h}}$	4	-	3	$1-\mathrm{c}, 2-\mathrm{a}, \mathrm{b}$	
$\mathrm{C}_{3 \mathrm{v}}$	4	c-oblate a-prolate	4	$2-\mathrm{c}, 2-\mathrm{a}, \mathrm{b}$	
$\mathrm{C}_{2 \mathrm{v}}$	6	asymmetric hybrid a, b or b, c	6	$3-\mathrm{a}, 2-\mathrm{b}, 1-\mathrm{c}$	

For $\mathrm{D}_{3 \mathrm{~h}}$ here will be two \perp polarized (E^{\prime}) fundamentals
There will be one || polarized ($\mathrm{A}_{2}^{\prime \prime}$) fundamental
There will be one forbidden (i.e. not observable by IR) fundamental (A_{1}^{\prime})
(a,b)-type \perp polarized (i.e. $\Delta \mathrm{K}= \pm 1$) oblate top vibrational spectrum (the two E^{\prime} modes in BCl_{3}

$$
\mathrm{E}_{\mathrm{JK}}^{\mathrm{ROT}}=\mathrm{BJ}(\mathrm{~J}+1)+(\mathrm{C}-\mathrm{B}) \mathrm{K}^{2} \quad \mathrm{C}-\mathrm{B}<0
$$

Strong Q branches. Q branch "spikes" dominate band profile.

$$
\begin{aligned}
& \mathrm{K}^{\prime}-\mathrm{K}^{\prime \prime} \\
&{ }^{\mathrm{R}} \mathrm{Q}_{0}(J)\left.\approx(\mathrm{C}-\mathrm{B})\left[1^{2}-0^{2}\right] \quad \text { (since } \Delta \mathrm{B} \text { is small }\right) \\
&{ }^{\mathrm{R}} \mathrm{Q}_{1}(\mathrm{~J}) \approx(\mathrm{C}-\mathrm{B})\left[2^{2}-1^{2}\right] \\
&{ }^{\mathrm{P}} \mathrm{Q}_{1}(\mathrm{~J}) \approx(\mathrm{C}-\mathrm{B})\left[0^{2}-1^{2}\right] \\
& \text { etc. }
\end{aligned}
$$

(c)-type \| polarized (i.e. $\Delta \mathrm{K}=0$) oblate top vibrational spectrum. (the one $\mathrm{A}_{2}^{\prime \prime}$ out-of plane bend from BCl_{3})
weak Q branches, except at $\mathrm{J} \approx \mathrm{K}$ and high K
$\Delta K=0$ only. All ${ }^{Q} \mathrm{Q}_{\mathrm{K}}(\mathrm{J})$ tend to pile up as spike at band origin.

(b,c)-type \perp prolate top bands $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leftrightarrow(\mathrm{b}, \mathrm{c}, \mathrm{a})$
Strong Q branches
${ }^{\mathrm{R}} \mathrm{Q}_{0}(\mathrm{~A}-\mathrm{B}) 1$
${ }^{\mathrm{R}} \mathrm{Q}_{1}(\mathrm{~A}-\mathrm{B}) 3$

Red

Blue

Looks very similar to \perp type oblate band except that branches are labeled in reverse order and more spread out (less overlap of K sub-bands) because usually $|A-B|_{\text {prolate }} \gg|B-C|_{\text {oblate }}$
a-type $(\|)$ prolate $\quad \Delta \mathrm{K}=0, \quad$ weak Q except at low $\mathrm{J} \approx \mathrm{K}$
Asymmetric tops: \quad Resemble symmetric top when $\mathrm{J} \approx \mathrm{K}$
More complicated because $\mathrm{E}_{\mathrm{J}_{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{c}}}}$ can't be separated into J-dependent and Kdependent additive terms.

[^0]

[^0]: Special simplification for linear molecules.
 zero-point level has only $\ell=0$ vibrational angular momentum.
 There is no K projection of J .
 Bending mode is $\pi \leftrightarrow \ell=1$.
 $\|$ type $\Delta \ell=0$ (anti-symmetric stretch), $\quad \perp$ type $\Delta \ell= \pm 1$ (bend)
 Benzene

 | E | $2 \mathrm{C}_{6}$ | $2 \mathrm{C}_{3}$ | C_{2} |
 | :---: | :---: | :---: | :---: |
 | 36 | 0 | 0 | 0 |

 thru thru $\quad \mathrm{h}=24$

 | atoms | bonds | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | \downarrow | \downarrow | | | | | | |
 | $3 \mathrm{C}_{2}^{\prime}$ | $3 \mathrm{C}_{2}^{\prime \prime}$ | i | $2 \mathrm{~S}_{3}$ | $2 \mathrm{~S}_{6}$ | σ_{h} | $3 \sigma_{\mathrm{d}}$ | $3 \sigma_{\mathrm{v}}$ |
 | -4 | 0 | 0 | 0 | 0 | 12 | 0 | +4 |

 | $\mathrm{D}_{6 \mathrm{~h}}$ | | D_{6} |
 | :--- | :--- | :--- |
 | $\mathrm{~A}_{1_{\mathrm{g}}} \frac{1}{24}(\underline{-12}+12+12+36)=2$ | | $\frac{1}{12}[36-12]=2$ |
 | $\mathrm{~A}_{2 \mathrm{~g}}=\frac{1}{24}(36+12+12-\underline{12})=2$ | | |
 | $\mathrm{~B}_{1 \mathrm{~g}}=\frac{1}{24}(36-12-12-12)=0$ | | $\frac{1}{12}[36+12]=4$ |
 | $\mathrm{~B}_{2 \mathrm{~g}}=\frac{1}{24}(36+12-\underline{12}+12)=2$ | | $\frac{1}{12}(36+12)=4$ |
 | $\mathrm{E}_{1 \mathrm{~g}}=\frac{1}{24}[72-24]=2$ | | $\frac{1}{12}[72]=6$ |
 | $\mathrm{E}_{2 \mathrm{~g}}=\frac{1}{24}[72+24]=4$ | | $\frac{1}{12}[72]=6$ |
 | $\mathrm{E}_{2 \mathrm{u}}=\frac{1}{24}[72+-24]=2$ | | |
 | $\mathrm{~A}_{1 \mathrm{u}}=\frac{1}{24}(36-12-12-12)=0$ | | |
 | $\mathrm{~A}_{2 \mathrm{u}}=\frac{1}{24}(36+12-\underline{12}+12)=2$ | | |

