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Lecture #29: A Sprint Through Group Theory 

Bernath 2.3-4, 3.3-8, 4.3-6. I'll touch on highlights 

Symmetry
odd vs. even integrands → 0 integrals
selection rules for matrix representation of any operator

* transition moment 
* H ← block diagonalization


generation of symmetry coordinates


how to deal with totality of exact ⎡⎣O,H⎤⎦ = 0 

approx. ⎡⎣O,H°⎤⎦ = 0 

convenient C2 ,H ROT a,b,c ⎡
⎣

⎤
⎦
= 0 symmetries 

Chapter 2: Molecular Symmetry 
rotation C 

n (axis) rotation by 
2π 
n  radians about (specified) axis ( C n C n = C n 

2
 etc.) 

reflection σ  (plane) reflect thru plane 
σv vertical (includes highest order Cn axis) 
σh horizontal (⊥ to highest order Cn axis) 
σd dihedral (also vertical, bisects angle between 2 C2 axes 

⊥ to Cn) 

contrast to I - inversion in 
lab (parity) 

inversion in body î = C 2 σ h inversion (C2 axis ⊥ to plane of σ h )
improper rotation S n = σ h C n = C n σ h (Cn axis ⊥ to plane of σ h ) [i = S2]
identity E do nothing 

Groups: Closure 
Associative Multiplication

Identity Element
Inverse of every element R. 

Rigid isolated molecules — point groups — all symmetry elements intersect at one point
[distinct from translational symmetries — periodic lattices

CNPI - nonrigid molecules (Complete Nuclear Permutation-Inversion)
MS - (Molecular Symmetry Group) subgroup of CNPI, isomorphic with point group, but

more insightful (especially when dealing with transitions between different point-
group structures)] 

Point Group notation
Cs , Ci , Cn, Dn , Cnv , Cnh , Dnh , Dnd 
↓ ↓ ↓ ↓ ↓ ↓ ↓ 

1 plane inversion nC2⊥Cn nσv Cn + σh Cn + nC2⊥ + σh Cn + nC2⊥ + σd 



Fall, 2008 Page 2 of 8 pages 

Sn Td Oh Ih
tetrahedral octahedral icosohedral 

[Flow Chart: Figure 2.11, page 52 of Bernath] 

Kh
spherical 

Bernath Chapter 3. Matrix Representations 

⎛
 ⎞
x

⎜ 
⎜⎜
⎝


⎟ 
⎟⎟
⎠

 which means r = xî + ŷj + zk̂ =
 xi
êi
∑
r =
 y


z
 i

ê1 ê2 ê3 convenient 

notationx1 x2 x3 

Apply symmetry operator, R , to coordinates of an atom (“Active”) 

⎛
 ⎛
⎞

⎟ 
⎟⎟
⎠

=

⎜ 
⎜⎜
⎝


x′ 1


x′ 2


x′ 3


⎛
⎞

⎟ 
⎟⎟
⎠


( ) = D R
 ⎜ 
⎜⎜
⎝


x1


x2


x3


⎞

⎟ 
⎟⎟
⎠


x1


x2


x3


⎜ 
⎜⎜
⎝


R


D R   symmetry operator.( )  is a 3 × 3 matrix representation of the R

1 0 0
⎛
 ⎞

⎜ 
⎜⎜
⎝


⎟ 
⎟⎟
⎠−1 

cθ sθ 0 

D(σ(12)) =
 0 1 0


0 0


⎛
 ⎞

⎜ 
⎜⎜
⎝


⎟ 
⎟⎟
⎠


( D C ) =
(3) 

3 axis 

−sθ cθ 0 
0 0 1 

θ

θ → –θ 
U–1 = U† What is the inverse of D C ) ?( (3)

What are the characteristics of a unitary
transformation?( ) =D C 

θ (3)−1 

* normalized rows and columns 
* rows (and columns) are orthogonal 

⎞ 
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

? 
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−1 0 0
⎛
 ⎞

⎜ 
⎜⎜
⎝


D( ) î = 0 −1 0


0 0
 −1 

⎛ cθ sθ 0 ⎞ 
⎜ ⎟ 

⎟ 
⎟⎟
⎠

D S( θ (3) ) = 0
 difference between Sθ  and C−sθ cθ⎜

−1⎠ 

⎟⎟ 
θ 

⎜
⎝ 0 0 

1 0 0
⎛
 ⎞

⎜ 
⎜⎜
⎝


⎟ 
⎟⎟
⎠


( ) =D E 0 1 0


0 0 1


We have been considering the effect of symmetry operations on coordinates of a point. We generated
matrices which represent the symmetry operations by producing the intended effect on coordinates.
These matrices have the same multiplication table as the symmetry operations themselves. The matrices 
form a representation of the group that includes these symmetry operations . 

We can form a matrix representation of any group by selecting any set of:
BASIS VECTORS;
coordinates of each atom in molecule;
each equivalent bond;
each equivalent angle;
anything convenient. (over-complete is OK) 

Before generating lots of matrix representations, we must consider ACTIVE vs. PASSIVE coordinate
transformations. 

ACTIVE: move the object (r → r′). Change the coordinates of the object. 

PASSIVE: move the axis system. (ê→ ê′) 

Equivalence of the two kinds of transformation: the coordinates of the untransformed object in the new
axis system are identical to the coordinates of the transformed object in the old coordinate system. 

in matrix notationr = ∑ êixi ⇒ r = e tx 
 r = e t ( ) x⎤⎦ = e tr′ = R ⎡⎣D R x′	 active (transformation

applied to the object) 

( )	 passive (transformation= ⎡⎣e t D R ⎤⎦x 
applied to the

= e′tx 
coordinate system) 
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e′t ≡ e t D R( ) 
take transpose 

( ) e′ = [e t D R ]t 
= Dt (R)e = D(R−1 ) e ! 

same as inverse for unitary matrix 

R acts on the coordinate system in the inverse sense to the way it acts on the object. 

We are now ready to construct 3N × 3N dimension matrix representations of effects of symmetry
operations on an N-atom molecule. 

We are going to simplify things soon to the traces or characters of these matrices, χ(R) : 
3N 

( ) ≡ ( )ii

i=1


χ R ∑D R

( ) !Keep this in mind when we focus on only what appears along the diagonal of D R

If a symmetry operation causes 2 atoms α, β to be permuted, all information about this is in the α, β off-
diagonal 3 × 3 block. 

⎛

⎜
⎜
⎜
⎜
⎜


α
 α,β 

 

⎝

β


⎞
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠



no contribution to 
character, χ 
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NON-LECTURE


What about the effect of a symmetry operation on a function?
f(x) = a number
active: move the function f(x′) = a different #
passive: move the coordinate system, which changes the function so that f′(x) ≠ f(x) [but it must

be true that f′(x) = f(x′)]
We want to find out what f′(x) is in terms of a complete orthogonal set of basis functions. How 

do we do this? 
We require that f(x) = f′(x′). The new function operating in the new coordinate system gives the

same number as the old function operating in the old coordinate system.
See pages 75-76 in Chapter 3 of Bernath for how to derive the new functions in terms of old

coordinates 
f(x,y,z) = xyz for example 
OC3 (z)f(x,y,z) = f (x,y,z) = (− 31/2 / 2 )x12 + 31/2 / 2 )x2 ′ ( ( 2 + x1x2 )x3 / 2 

So we know how to derive a matrix representation of any symmetry operation.
NOT unique, but it doesn't matter because regardless of what set of orthogonal basis vectors we use to

generate our matrices, the matrices
* have the same trace (sum of eigenvalues)
* have the same eigenvalues (and determinant which is product of eigenvalues)
* differ from each other by at most a similarity transformation
D′ = T−1DT T−1 = T† (unitary) 

 
a special case. 

Suppose we have generated a set of 3N × 3N matrix representations of all symmetry operations, R . 
Perhaps there is a special unitary transformation T that causes all matrices to take the same block 

diagonal form. Reduced dimension representations.
Group Theory helps us to find these simplest possible “irreducible representations.” 

Γ symbolizes a representation 

Γred { 1 ), D R a set of same-dimensional matrices = D R( (  2 ),…} 
Γred = Γ(1) ⊕Γ(2) ⊕Γ(n) blocks assembled along diagonal 

⊕ means direct sum of representations = ∑ aνΓ
(ν) 

ν 

5.80 Lecture #29 



Fall, 2008 Page 6 of 8 pages 

Great Orthogonality Theorem (GOT) ⇒ helps to find the irreducible representations
and, most importantly, to reduce the reducible representations to a sum of
irreducible representations. 

symmetry operations)
* 

GOT : µ R ⎡ ν R ⎤ = 
g∑ Dik

( ) ⎣Djm 
( ) ⎦ nµ 

δµνδijδkm 
R 

row andg terms dimension of µ-th
in sum column irreducible representation 

of matrix 

complex conjugate
specific irreducible
representation order of group (# of

∑
ν 

n2 
ν = g (sum of squares of dimensions of irreducible representations is order of group) 

Simplify to characters (because characters are all we need for most applications). 

nµ

( ) ≡ ( ) χµ R ∑ Dii
µ R nµ  is the dimension of the µ-th irreducible representation 

i=1 
For characters, we have a simplified form of the GOT: 

*( ) χν ( ) GOT : ∑ χµ R ⎡⎣ R ⎤⎦ = gδµν 
R 

χred ( ) = ( ) R ∑ aνχ
ν R

ν 

sum over all 
irreducible 

representations 
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( ) χµ ( )* 
aµ = 

1 ∑ χred R R
g R be careful about classes


# of times µ-th irreducible representation appears in initial reducible representation

Example: 

C3v 

A1

A2
E 

Condensed according to “classes”. To find the members of 
E 2C 3 3σ̂ v the class that contains R , perform R ′−1RR ′  for all R ′ 
1 1 1 # of classes: k
1 1 –1 # members of each class: gi2 –1 0 

∑gi = g
3 classes, 3 irreducible representations i 

# of irreducible representations: r
r = k (∴ condensed character table is square!) 
∑n2µ = g 

Mulliken Notation for irreducible representations. 

1 dimensional:A or B 
χ(C n ) = +1  (for A) –1 (for B) (n is highest order rotation)


2 dimensional:E

3 dimensional:T or F


if î is present χ( ) î = +1 or – 1 (e.g. Ag, Au )
g u 

σ̂ h χ σ̂h ) = +1 or – 1 (e.g. ′ ′′( A , A ) 
′ ″ 

1 and 2 labels — no special rule except by convention for problematic point groups. 

NH3 [C3v] 12 × 12 reducible Cartesian representation 
E 2C 3 3σ̂ v 

χred 12 0 (from H’s) 2–1 (for N) 

1+ 2cos 2
3 
π = 0 2 – 1 (for one H)


(from N)

12 0 2


χred = [12, 0, 2] 
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Decompose χred 

aA1 g
1 ∑ 

R 

χred  ( )χA1 ( )* 
= R R g = 6 (one E, two C3, three σv ) 

= 
1 [12·1 + 2·0·1 + 3·2·1] = 

1 [12 + 6] = 3
6 6 

aA2 6
1 [12·1 + 2·0·1 + 3·2·(−1) ] = 1=


aE = 
6
1 [12·2 + 2·0·(−1) + 3·2·0 ] = 4


3 + 1 + 2(4) = 12


Next: remove rotations and translations.
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