MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#29: A Sprint Through Group Theory

Bernath 2.3-4, 3.3-8, 4.3-6. I'll touch on highlights
Symmetry
odd vs. even integrands $\rightarrow 0$ integrals
selection rules for matrix representation of any operator

* transition moment
* $\widehat{\mathbf{H}} \leftarrow$ block diagonalization
generation of symmetry coordinates
how to deal with totality of exact $\quad[\widehat{O}, \widehat{\mathbf{H}}]=0$
approx. $\quad\left[\widehat{\mathrm{O}}, \widehat{\mathbf{H}}^{\circ}\right]=0$
convenient $\quad\left[\mathrm{C}_{2}^{\mathrm{a}, \mathrm{b}, \mathrm{c}}, \widehat{\mathbf{H}}^{\mathrm{ROT}}\right]=0$ symmetries
Chapter 2: Molecular Symmetry
rotation $\quad \hat{\mathrm{C}}_{\mathrm{n}}$ (axis) rotation by $\frac{2 \pi}{\mathrm{n}}$ radians about (specified) axis ($\hat{\mathrm{C}}_{\mathrm{n}} \widehat{\mathrm{C}}_{\mathrm{n}}=\hat{\mathrm{C}}_{\mathrm{n}}^{2}$ etc.)
reflection $\quad \hat{\sigma}$ (plane) reflect thru plane
$\sigma_{v} \quad$ vertical (includes highest order C_{n} axis)
$\sigma_{h} \quad$ horizontal (\perp to highest order C_{n} axis)
$\sigma_{\mathrm{d}} \quad$ dihedral (also vertical, bisects angle between $2 \mathrm{C}_{2}$ axes
\perp to C_{n})
$\begin{array}{lll} & \begin{array}{ll}\text { contrast to I - inversion in } \\ \text { lab (parity) }\end{array} & \\ \text { inversion in body } & \hat{\mathrm{i}}=\hat{\mathrm{C}}_{2} \hat{\sigma}_{\mathrm{h}} \text { inversion } & \left(\mathrm{C}_{2} \text { axis } \perp \text { to plane of } \hat{\sigma}_{\mathrm{h}}\right) \\ \text { improper rotation } & \hat{\mathrm{S}}_{\mathrm{n}}=\hat{\sigma}_{\mathrm{h}} \hat{\mathrm{C}}_{\mathrm{n}}=\hat{\mathrm{C}}_{\mathrm{n}} \hat{\sigma}_{\mathrm{h}} & \begin{array}{l}\left(\mathrm{C}_{\mathrm{n}} \text { axis } \perp \text { to plane of } \hat{\sigma}_{\mathrm{h}}\right)\left[\mathrm{i}=\mathrm{S}_{2}\right] \\ \text { do nothing }\end{array} \\ \text { identity } & \hat{\mathrm{E}} & \end{array}$

Groups: Closure

Associative Multiplication
Identity Element
Inverse of every element R.
Rigid isolated molecules - point groups - all symmetry elements intersect at one point [distinct from translational symmetries - periodic lattices

CNPI - nonrigid molecules (Complete Nuclear Permutation-Inversion)
MS - (Molecular Symmetry Group) subgroup of CNPI, isomorphic with point group, but more insightful (especially when dealing with transitions between different pointgroup structures)]

Point Group notation

C_{\downarrow},	C_{i},	C_{n},	D_{\downarrow},	$\mathrm{C}_{\mathrm{\eta v}},$	C_{q},	D_{nh},	$\mathrm{D}_{\text {nd }}$
1 plane	inversion		$\mathrm{nC}_{2} \perp \mathrm{C}_{\mathrm{n}}$	$n \sigma_{v}$	$\mathrm{C}_{\mathrm{n}}+\sigma_{\mathrm{h}}$	$\mathrm{C}_{\mathrm{n}}+\mathrm{nC}_{2} \perp+\sigma_{\mathrm{h}}$	$\mathrm{C}_{\mathrm{n}}+\mathrm{nC}_{2} \perp+\sigma_{\mathrm{d}}$

tetrahedral octahedral icosohedral spherical
[Flow Chart: Figure 2.11, page 52 of Bernath]
Bernath Chapter 3. Matrix Representations

Apply symmetry operator, $\widehat{\mathrm{R}}$, to coordinates of an atom ("Active")

$$
\hat{R}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=D(\hat{R})\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$D(\hat{R})$ is a 3×3 matrix representation of the \widehat{R} symmetry operator.
$D(\hat{\sigma}(12))=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$\mathrm{D}\left(\hat{\mathrm{C}}_{\theta}(3)\right)=\left(\begin{array}{ccc}c \theta & s \theta & 0 \\ -s \theta & c \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
3 axis
$\mathrm{D}\left(\hat{\mathrm{C}}_{\theta}(3)^{-1}\right)=($
What is the inverse of $\mathrm{D}(\widehat{\mathrm{C}}(3))$?
What are the characteristics of a unitary transformation?

* normalized rows and columns
* rows (and columns) are orthogonal

$$
\begin{aligned}
& \mathrm{D}(\hat{\mathrm{i}})=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \mathrm{D}\left(\hat{\mathrm{~S}}_{\theta}(3)\right)=\left(\begin{array}{ccc}
\mathrm{c} \theta & \mathrm{~s} \theta & 0 \\
-\mathrm{s} \theta & \mathrm{c} \theta & 0 \\
0 & 0 & -1
\end{array}\right) \text { difference between } \hat{\mathrm{S}}_{\theta} \text { and } \hat{\mathrm{C}}_{\theta} \\
& \mathrm{D}(\hat{\mathrm{E}})=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

We have been considering the effect of symmetry operations on coordinates of a point. We generated matrices which represent the symmetry operations by producing the intended effect on coordinates. These matrices have the same multiplication table as the symmetry operations themselves. The matrices form a representation of the group that includes these symmetry operations .

We can form a matrix representation of any group by selecting any set of:
BASIS VECTORS;
coordinates of each atom in molecule;
each equivalent bond;
each equivalent angle;
anything convenient. (over-complete is OK)
Before generating lots of matrix representations, we must consider ACTIVE vs. PASSIVE coordinate transformations.

ACTIVE: move the object $\left(r \rightarrow r^{\prime}\right)$. Change the coordinates of the object.
PASSIVE: move the axis system. $\left(\hat{\mathbf{e}} \rightarrow \hat{\mathbf{e}}^{\prime}\right)$
Equivalence of the two kinds of transformation: the coordinates of the untransformed object in the new axis system are identical to the coordinates of the transformed object in the old coordinate system.

$$
\begin{aligned}
\underline{r} & =\hat{e_{i}} \hat{X}_{i} \Longrightarrow \underline{r}=\underline{e}^{t} \underline{X} \\
\underline{r}^{\prime} & =\widehat{R} \underline{r} \\
=\underline{e}^{t}[\underline{D}(\widehat{R}) \underline{X}]=\underline{e}^{t} \underline{X}^{\prime} & \begin{array}{l}
\text { in matrix notation } \\
\text { active (transformation } \\
\text { applied to the object) }
\end{array} \\
& =\left[\underline{e}^{t} \underline{D}(\widehat{\mathbf{R}})\right] \underline{X} \\
& =\underline{e}^{\prime t} \underline{X}
\end{aligned}
$$

$\underline{\mathrm{e}}^{\mathrm{t}} \equiv \underline{\mathrm{e}}^{\mathrm{t}} \underline{\mathrm{D}}(\widehat{\mathrm{R}})$

take transpose

$\widehat{\mathrm{R}}$ acts on the coordinate system in the inverse sense to the way it acts on the object.

We are now ready to construct $3 \mathrm{~N} \times 3 \mathrm{~N}$ dimension matrix representations of effects of symmetry operations on an N -atom molecule.

We are going to simplify things soon to the traces or characters of these matrices, $\chi(\widehat{\mathrm{R}})$:

$$
\chi(\widehat{\mathrm{R}}) \equiv \sum_{\mathrm{i}=1}^{3 \mathrm{~N}} \underline{\mathrm{D}}(\hat{\mathrm{R}})_{\mathrm{ii}}
$$

Keep this in mind when we focus on only what appears along the diagonal of $\underline{D}(\widehat{R})$!
If a symmetry operation causes 2 atoms α, β to be permuted, all information about this is in the α, β offdiagonal 3×3 block.

NON-LECTURE

What about the effect of a symmetry operation on a function?
$\mathrm{f}(\mathrm{x})=$ a number
active: move the function $\mathrm{f}\left(\mathrm{x}^{\prime}\right)=$ a different \#
passive: move the coordinate system, which changes the function so that $\mathrm{f}^{\prime}(\mathrm{x}) \neq \mathrm{f}(\mathrm{x})$ [but it must be true that $\left.\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}^{\prime}\right)\right]$
We want to find out what $\mathrm{f}^{\prime}(\mathrm{x})$ is in terms of a complete orthogonal set of basis functions. How do we do this?
We require that $f(x)=f^{\prime}\left(x^{\prime}\right)$. The new function operating in the new coordinate system gives the same number as the old function operating in the old coordinate system.
See pages 75-76 in Chapter 3 of Bernath for how to derive the new functions in terms of old coordinates
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xyz}$ for example
$\widehat{\mathrm{O}}_{\mathrm{c}_{3}(\mathrm{z})} \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(-\left(3^{1 / 2} / 2\right) \mathrm{x}_{1}^{2}+\left(3^{1 / 2} / 2\right) \mathrm{x}_{2}^{2}+\mathrm{x}_{1} \mathrm{x}_{2}\right) \mathrm{x}_{3} / 2$
So we know how to derive a matrix representation of any symmetry operation.
NOT unique, but it doesn't matter because regardless of what set of orthogonal basis vectors we use to
generate our matrices, the matrices

* have the same trace (sum of eigenvalues)
* have the same eigenvalues (and determinant which is product of eigenvalues)
* differ from each other by at most a similarity transformation
$\mathrm{D}^{\prime}=\mathrm{T}^{-1} \mathrm{DT} \quad \underbrace{\mathrm{T}^{-1}=\mathrm{T}^{\dagger} \text { (unitary) }}_{\mathrm{a} \text { special case. }}$
Suppose we have generated a set of $3 \mathrm{~N} \times 3 \mathrm{~N}$ matrix representations of all symmetry operations, $\widehat{\mathrm{R}}$. Perhaps there is a special unitary transformation \mathbf{T} that causes all matrices to take the same block diagonal form. Reduced dimension representations.
Group Theory helps us to find these simplest possible "irreducible representations."
Γ symbolizes a representation

$$
=\sum \boldsymbol{a}_{v} \Gamma(v) \quad \oplus \text { means direct sum of representations }
$$

$$
\begin{aligned}
& \Gamma^{\text {red }}=\Gamma^{(1)} \oplus \Gamma^{(2)} \oplus \cdots \Gamma^{(\mathrm{n})} \text { blactascmbed dalog digenal }
\end{aligned}
$$

Great Orthogonality Theorem (GOT) \Rightarrow helps to find the irreducible representations and, most importantly, to reduce the reducible representations to a sum of irreducible representations.

$$
\sum_{v} \mathrm{n}_{\mathrm{v}}^{2}=\mathrm{g} \quad \text { (sum of squares of dimensions of irreducible representations is order of group) }
$$

Simplify to characters (because characters are all we need for most applications).

$$
\chi^{\mu}(\widehat{\mathrm{R}}) \equiv \sum_{\mathrm{i}=1}^{\mathrm{n}_{\mu}} \mathrm{D}_{\mathrm{ii}}^{\mu}(\widehat{\mathrm{R}}) \quad \mathrm{n}_{\mu} \text { is the dimension of the } \mu \text {-th irreducible representation }
$$

For characters, we have a simplified form of the GOT:
GOT: $\sum_{\hat{\mathrm{R}}} \chi^{\mu}(\hat{\mathrm{R}})\left[\chi^{\nu}(\widehat{\mathrm{R}})\right]^{*}=\mathrm{g} \delta_{\mu \nu}$
$\chi^{\text {red }}(\widehat{\mathrm{R}})=\sum \mathrm{a}_{\nu} \chi^{\nu}(\widehat{\mathrm{R}})$

\# of times μ-th irreducible representation appears in initial reducible representation
Example:
Condensed according to "classes". To find the members of

$\mathrm{C}_{3 \mathrm{v}}$	$\hat{\mathrm{E}}$	$2 \hat{\mathrm{C}}_{3}$	$3 \hat{\sigma}_{\mathrm{v}}$
A_{1}	1	1	1
$\mathrm{~A}_{2}$	1	1	-1
E	2	-1	0

3 classes, 3 irreducible representations
the class that contains \hat{R}, perform $\widehat{R}^{\prime-1} \widehat{R} \widehat{R}^{\prime}$ for all \hat{R}^{\prime}
\# of classes: k
\# members of each class: g_{i}

$$
\sum_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}=\mathrm{g}
$$

\# of irreducible representations: r
$\mathrm{r}=\mathrm{k}(\therefore$ condensed character table is square! $)$
$\sum \mathrm{n}_{\mu}^{2}=\mathrm{g}$

Mulliken Notation for irreducible representations.
1 dimensional: A or B

$$
\chi\left(\widehat{\mathrm{C}}_{\mathrm{n}}\right)=+1(\text { for } \mathrm{A})-1(\text { for } \mathrm{B}) \quad(\mathrm{n} \text { is highest order rotation })
$$

2 dimensional:E
3 dimensional: T or F

$$
\begin{array}{lll}
\text { if } \hat{\mathrm{i}} \text { is present } & \chi(\hat{\mathrm{i}})=\underset{g}{+1} \text { or }-1 & \left(\text { e.g. } A_{g}, A_{u}\right) \\
\hat{\sigma}_{h} & \chi\left(\hat{\sigma}_{h}\right)=+1 \text { or }-1 & \left(\text { e.g. } A^{\prime}, A^{\prime \prime}\right)
\end{array}
$$

${ }_{1}$ and ${ }_{2}$ labels - no special rule except by convention for problematic point groups.
$\mathrm{NH}_{3}\left[\mathrm{C}_{3 \mathrm{v}}\right] \quad 12 \times 12$ reducible Cartesian representation
$\hat{E} \quad 2 \hat{\mathrm{C}}_{3} \quad 3 \hat{\sigma}_{\mathrm{v}}$
$\chi^{\text {red }} \quad 120$ (from H's) $2-1$ (for N)

$$
1+2 \cos \frac{2 \pi}{3}=0 \quad 2-1(\text { for one } \mathrm{H})
$$

(from N)
120

$$
2
$$

$\chi^{\mathrm{red}}=[12,0,2]$

Decompose $\chi^{\text {red }}$

$$
\begin{aligned}
\mathrm{a}_{\mathrm{A}_{1}} & \left.=\frac{1}{\mathrm{~g}} \sum_{\widehat{\mathrm{R}}} \chi^{\text {red }}(\hat{\mathrm{R}})^{\mathrm{A}_{1}}(\hat{\mathrm{R}})^{*} \quad \mathrm{~g}=6 \text { (one } \mathrm{E}, \text { two } \mathrm{C}_{3}, \text { three } \sigma_{v}\right) \\
& =\frac{1}{6}[12 \cdot 1+2 \cdot 0 \cdot 1+3 \cdot 2 \cdot 1]=\frac{1}{6}[12+6]=3 \\
\mathrm{a}_{\mathrm{A}_{2}} & =\frac{1}{6}[12 \cdot 1+2 \cdot 0 \cdot 1+3 \cdot 2 \cdot(-1)]=1 \\
\mathrm{a}_{\mathrm{E}} & =\frac{1}{6}[12 \cdot 2+2 \cdot 0 \cdot(-1)+3 \cdot 2 \cdot 0]=4 \\
3+1 & +2(4)=12
\end{aligned}
$$

Next: remove rotations and translations.

