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Lecture #28: Polyatomic Vibrations IV: Symmetry 

What is a normal mode? 
all atoms undergoing oscillation at the same frequency and phase and with amplitudes 
determined by the eigenvectors of the GF matrix. 

= L−1 stα = stα (t) êstαQ S 
 

we built in specific relative lengths stα (t) cos(λt + δ) 
of displacements 

-1Si 
eigenvectors aree.g. Q j = ∑ L ji rows of L–1 

i 
If we represent Si by a set of siα  vectors of prescribed lengths and directions, then L–1 tells us 

 how to weight and add the vectors at each atom associated with the various internal 
displacements 

e.g. H2O (page 4 of H2O example in 4/24/96 notes)


Q1 = 0.685 (S2 – S1)


Q2 = 0.695 (S1 + S2) + 0.037S3


Q3 = 0.655S3


S1 = S2 = S3 = 
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Q1 = = 

Q2 = = 

Q3 = 

names of normal modes 

from pictures or from equations? 

Note that each of the pictures involves some change of bond angle. So which mode is the “bend”? 

Q1 involves dominantly a compression of one bond and an expansion of the other equivalent one; 

Q2 involves dominantly two equivalent bonds expanding and contracting in phase; 

Q3 pure internal bend. 

equations: S1 ± S2 “symmetric” “antisymmetric” 

mixed character — no S3 in Q1 

some S3 character in Q2 
Why no (S1 + S2) character in Q3? Actually, there is some, but very small. 
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NON-LECTURE
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1.003 

actually small, not 0 
by symmetry 

−0.732 0.720


0.732 0.720


−0.685 +0.685 0 

0.695 0.695 0.037 

0 0 0.655 

0 1 0


0 0 1


0 0.001 1.001


Why are there mixtures of internal coordinates in the normal coordinates? 

This perturbation Some are due solely to symmetry.

theory kind of
 Others are due to the structure of the F and G matrices. The detailed character of 

argument is OK for the modes depends on ratios of off diagonal matrix elements of GF to differences 
symmetric matrix. between diagonal values, just as for H (even though GF is not symmetric). 

Best to see the cause of mixed character normal modes by going to symmetrized internal coordinates. 

Let S = U S 

2−1/2 2−1/2 0

 


U = 2−1/2 −2−1/2 0

 

 0 0 1 

1 1 

S F S = S U†UFU†U S = S F S

0 0


0 1.001 0.004


1 0 0

?L−1L

=


=
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F = UFU† 

similarly 
G = UGU† 

8.454 md / Å −0.100 md / Å 0.224 md


−0.100 md / Å 8.454 md / Å
 0.244 md


0.224 md 0.224 md 0.697 md·Å


8.254md / Å 0 0.317md


0 8.654md / Å 0


0.317md 0 0.697md·Å


F =





 




 







(md = millidyne, dyne is the cgs unit of force, now illegal.) 

Note that each term in expansion of determinant |F| has same units: md3/Å even though individual terms 
in F do not. 

An easy way for humans, not computers, to compute new F  matrix is term by term rather than 
multiplying out. 

F11 = 2−1/2 (S1 + S2 ) F (S1 + S2 ) 2−1/2


1

= [F11 + F22 + 2F12 ] = 8.454md / Å − 0.200md / Å 
2


= 8.254md / Å


 




1 
=
F12 = 

1 (S1 − S2 ) F (S1 + S2 ) [F11 − F22 + F12 − F21 ] = 0 
2 2 

etc. 

F =
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rearrange 


 
8.254md / Å
 0.317md 0
 1

 




 




F
 0.697md·Å
 0
 3
sym
=


Similarly for 
 1.054 amu−1 −0.015 amu−1 −0.063 amu−1Å−1  
  

G = −0.015 amu−1 1.054 amu−1 −0.063 amu−1Å−1 
 

  
−0.063 amu−1 −0.063 amu−1Å−1 2.336 amu−1Å−2 

 

and, in re-arranged form 

1.039 amu−1 −0.089 amu−1Å−1 0  1 
G = 

 
sym 2.336 amu−1Å−2 0 

 
3 

  
 0 0 1.069 amu−1 

 2 

Notice that both F  and G  are block diagonalized. 

This is a symmetry effect → Group Theory. 
(torsions in  would have been a separate block in symmetry coordinates) 

What would cause the coupling between S1  and S 3  to get larger or smaller? IVR 
Look at G13  and F13 . 

0 0 8.654md / Å
 2
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G13 = −2−1/2 ( e )−1
sinθe 1 with respect to G11 − Gr32   

mass & m3 center atom geometry 

33

small for heavy
end atoms

 

effects 
→ 0 at linear 
→ max at 90° F13 with respect to F11 − F 33 
→ small for very heavy center atom 

bend and stretch have very different Fii but

two stretches or two bends have

more similar ones


Physical basis for “bend” vs. “stretch” as dominant

character in a normal mode, even though there is no

symmetry reason that stretches and bends should

not mix strongly.


Alternate approach to vibrational analysis. 

See Bernath pages 220-225. 

Work in mass weighted Cartesian displacement representation rather than internal coordinates. 
Convenient for electronic structure calculations. No insight. No transferability. 
3N × 3N f matrix 

f is symmetric

f+ = Λ eigenvalues of f matrix


(6 are zero)

+ = –1 unitary→ |Q〉 = |q〉


Once we obtain {λi} and  can get to |S〉 and F representations if desired. 

Now for quantum mechanics and treatment beyond harmonic level. 

We know what individual atom motions are involved in each Q. Set up matrix representation of
H(P,Q). 
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3N−6 

H = ∑ hn
0 (Qn,Pn ) + V′(Q1,…Q3N−6 ) 

n=1 

1 / 2

 
 
 
 





 
 
 
 










3 / 2 0 find out about this! 
∂P = 

 
i ∂Q 

T = P
2 

2 because ? 
h0 = hω
 0 


v +1 / 2 n 

n n 





V = ∑ FijkQiQ jQk + ∑ FijklQiQ jQkQl 
ijk ijkl 

matrix elements 

H v1 ′ …v1 …v3N−6 ; v3N ′ −6 

infinite matrix 
how to truncate? 
how to organize? 

* in order of increasing energy 
* polyads 

What is a polyad? 
2 mode frequencies are near integer multiples of each other, e.g. 2 : 1. 

2 : 1 polyad 
ω1 ≈ 2ω2 

etc. 
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hexad (0,10) (1,8) (2,6) (3,4) (4,2) (5,0) 
… 

triad (0,4) (1,2) (2,0) 
(0,3) (1,1) 

dyad (0,2) (1,0) 
(0,1) 
(v1,v2) = (0,0) 

# of levels in polyad increase monotonically, but all matrix elements are related to 1st example. 

1H0,2;1,0 ∝ F122 
(2·1)1/2 ( ) = 21/2 F122 

Hnm;n+1 m−2 ∝ F122 
(m·m −1)1/2 (n +1)1/2 

= H02;10 
m(m −

2
1)(n +1) 


1/2 

“superpolyad” — two interlocking polyads, as in acetylene ω1 : ω2 : ω3 : ω4 : ω5 = 5 : 3 : 5 : 1 : 1 

Darling-Dennison Q1
2Q2

3 

2345 Q2Q3Q4Q5 

Resonance Vectors 

Basis Vectors (v1, v2, v3, v4, 4, v5, 5) 7 dimensional vector 

each harmonic oscillator product state represented by a 7 dimensional vector 

each coupling term represented by a vector that describes its selection rules. 

Q1
2Q2

3 (2 0 –2 0 0 0 0) 
Q1 
2Q3 

2 

ψ1 ψ2 

Find conserved quantum numbers by listing all relevant resonance vectors, then find directions ⊥ to all 
of those. 

In HCCH nres ns  are the conserved quantities: “polyad quantum numbers”. 
Tells you which block of H to diagonalize. 


