MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#27: Polyatomic Vibrations III: s-Vectors and $\mathrm{H}_{2} \mathrm{O}$

Last time:
F-matrix: too many F_{ij} 's even at quadratic-only level
Internal coordinates: types
3N-6 independent ones
constraints $\quad *$ translation

* rotation
$\underset{\sim}{s}$-vectors $\quad{\underset{\sim}{\alpha}}^{\nabla} \mathrm{S}_{\mathrm{t}} \equiv \mathrm{S}_{\mathrm{t} \alpha} \quad *$ direction of fastest increase
* magnitude resulting from unit displacement in optimum direction

$$
\mathrm{S}_{\mathrm{t}}\left(\left\{\vec{\rho}_{\alpha}\right\}\right)=\sum_{\alpha=1}^{\mathrm{N}}{\underset{\mathrm{~s}}{\alpha} \alpha} \bullet \vec{\rho}_{\alpha}
$$

rigid translation $\vec{\rho}_{\alpha}=\vec{\varepsilon} \quad$ for all α

$$
\rightarrow \sum_{\alpha}{\underset{\sim}{s} \alpha \alpha}=0
$$

rigid rotation by $\mathrm{d} \vec{\Omega} \quad \vec{\rho}_{\alpha}(\mathrm{d} \vec{\Omega})=\overrightarrow{\mathrm{R}}_{\alpha} \times \mathrm{d} \vec{\Omega}$

$$
\mathrm{S}_{\mathrm{t}}(\mathrm{~d} \vec{\Omega})=\mathrm{d} \vec{\Omega} \cdot \sum_{\alpha} \mathrm{S}_{\tau \alpha} \times \overrightarrow{\mathrm{R}}_{\alpha}
$$

$$
\text { constraint } \sum_{\alpha} \mathrm{s}_{\mathrm{t} \alpha} \times \overrightarrow{\mathrm{R}}_{\alpha}^{\mathrm{e}}=0
$$

ECKART
(minimizes vibrational angular momentum)
If the normal displacements are built from ${\underset{\sim}{t} \alpha}$ vectors that satisfy these constraints, then, for infinitesimal displacements from equilibrium, there is no rotation. For large displacements, or for small displacements away from a non-equilibrium configuration, there is a small vibrational angular momentum. This definition of vibrations embeds a specific partitioning between rotation and vibration.

TODAY:
G from ${\underset{\sim}{t \alpha}}$'s
Examples of $\mathrm{s}_{\mathrm{t} \alpha}$'s $1 . \quad$ valence bond stretch $\Delta \mathrm{r}$
2. valence angle bend $\Delta \phi$

G matrix using diagrams and tables from WDC pages 304 and 305
$\mathrm{H}_{2} \mathrm{O}$ FG handout
$\mathbf{G} \equiv \mathbf{D D}^{\dagger}$
recall $|S\rangle=\mathbf{B}|\xi\rangle=\mathbf{D}|\mathbf{q}\rangle=\mathbf{D} \mathbf{M}^{1 / 2}|\xi\rangle$

$$
\begin{aligned}
\mathbf{B} & =\mathbf{D} \mathbf{M}^{1 / 2} \\
\mathbf{B} \mathbf{M}^{-1 / 2} & =\mathbf{D} \\
\mathbf{G}=\mathbf{D D}^{\dagger} & =\mathbf{B} \mathbf{M}^{-1 / 2}\left(\mathbf{M}^{-1 / 2}\right)^{\dagger} \mathbf{B}^{\dagger}=\mathbf{B} \mathbf{M}^{-1} \mathbf{B}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\alpha=1}^{\mathrm{N}} \frac{1}{\mathrm{~m}_{\alpha}}\left(\nabla_{\alpha} \mathrm{S}_{\mathrm{t}}\right)_{0} \cdot\left(\nabla_{\alpha} \mathrm{S}_{\mathrm{t}^{\prime}}\right)_{0} \\
& \mathrm{G}_{\mathrm{tt}^{\prime}}=\sum_{\alpha=1}^{\mathrm{N}} \frac{1}{\mathrm{~m}_{\alpha}} \mathrm{s}_{\mathrm{ta}} \cdot \mathrm{~s}_{\mathrm{I}^{\prime} \alpha}
\end{aligned}
$$

This way to derive \mathbf{G} is convenient

* locally defined ${\underset{\sim}{t \alpha}}$. Easy to compute ${\underset{\sim}{t \alpha}}^{s_{\tau}}{\underset{\sim}{\prime} \alpha}$.
* Each S_{t} involves small number of $\mathrm{s}_{\mathrm{t} \alpha}$'s (only the involved atoms).
* Small number of topological cases for internal displacements. All analyzed in WDC, pages 303-306.
$\underset{\sim}{s}$-Vector Method. WDC pages 54-63.
* start with all atoms at equilibrium positions;
* direction of $\mathrm{s}_{\mathrm{t} \alpha}$ is direction of α 'th atom must move to yield maximum increase in S_{t};
* magnitude of $\mathrm{s}_{\mathrm{t} \alpha}$ is increase in S_{t} that results from unit displacement of atom α in optimal direction;
* must verify or impose the 6 constraints (3 Cartesian components for the two vector constraint equations).

$$
\sum_{\alpha} \mathfrak{s}_{\text {sk }}=0 \quad \sum_{\alpha} \overrightarrow{\mathrm{R}}_{\alpha}^{\mathrm{e}} \times \mathrm{s}_{1 \alpha}=0
$$

Several possible types of internal displacements.

1. Bond Stretch
2. Valence angle bend
3. angle between a bond and a plane (non-planar $\tilde{\mathrm{A}}^{1} \mathrm{~A}_{2}$ state of $\mathrm{H}_{2} \mathrm{CO}$) defined by 2 bonds
4. torsion \rightarrow trans-bent excited $\tilde{\mathrm{A}}^{1} \mathrm{~A}_{u}$ state of HCCH
5. Bond Stretch $\mathrm{S}_{\mathrm{t}} \equiv \Delta \mathrm{r}$

only 2 nonzero $\underset{\sim}{s}$ vectors (even in a long linear chain)!
Atom 1
Atom 2

$$
\begin{array}{ll}
\left|\mathrm{s}_{\mathrm{t} 1}\right|=1 & \overrightarrow{\mathrm{~s}}_{\mathrm{t} 1}=\overrightarrow{\mathrm{e}}_{21}=-\overrightarrow{\mathrm{e}}_{12} \\
\left|\mathrm{~s}_{\mathrm{t} 2}\right|=1 & \overrightarrow{\mathrm{~s}}_{\mathrm{t} 2}=-\overrightarrow{\mathrm{e}}_{21}=\overrightarrow{\mathrm{e}}_{12}
\end{array}
$$

$S_{t}\left(\left\{\vec{\xi}_{\alpha}\right\}\right)=\hat{e}_{21}\left(\vec{\rho}_{1}-\vec{\rho}_{2}\right)$
(displacements of all other atoms have no effect on Δr_{12})
These are the vector representations of $S_{\Delta r}$.
Are the constraints satisfied?

$$
\begin{aligned}
\sum_{\alpha}{\underset{\sim}{\mathrm{s} \alpha}} & ={\underset{\sim}{\mathrm{s} 1}}+{\underset{\sim}{\mathrm{t} 2}}=-\hat{\mathrm{e}}_{12}+\hat{\mathrm{e}}_{12}=0! \\
\sum_{\alpha} \overrightarrow{\mathrm{R}}_{\alpha}^{\mathrm{e}} \times{\underset{\sim}{\mathrm{t} \alpha}} & =\overrightarrow{\mathrm{R}}_{1}^{\mathrm{e}} \times\left(-\hat{\mathrm{e}}_{12}\right)+\overrightarrow{\mathrm{R}}_{2}^{\mathrm{e}} \times\left(\hat{\mathrm{e}}_{12}\right) \\
& =\left(\overrightarrow{\mathrm{R}}_{2}^{\mathrm{e}}-\overrightarrow{\mathrm{R}}_{1}^{\mathrm{e}}\right) \times \hat{\mathrm{e}}_{12}
\end{aligned}
$$

2. Valence Angle Bend $\quad S_{t} \equiv \Delta \phi$

Exactly 3 atoms are involved. 3 nonzero ${\underset{\sim}{c} \alpha}$'s.
How to move each atom to increase ϕ by maximum amount?

$$
\tan \Delta \phi \approx \Delta \phi=\frac{\left|\mathrm{s}_{\mathrm{t}}\right|}{\mathrm{r}_{31}}
$$

How to define a UNIT VECTOR pointing in correct direction?

$$
\begin{gathered}
\hat{\mathrm{e}}_{\mathrm{s}_{11}}=\hat{\mathrm{e}}_{31} \times \frac{\hat{\mathrm{e}}_{31} \times \hat{\mathrm{e}}_{32}}{\sin \phi} \quad \text { Recall }\left|\hat{\mathrm{e}}_{31} \times \hat{\mathrm{e}}_{32}\right|=\sin \phi \\
\text { right hand rule } \\
\perp \text { to plane, up out of board }
\end{gathered}
$$

Rules for vector triple product

Now, how much does unit displacement of atom 1 in $\hat{e}_{s_{41}}$ direction increase S_{t} ?

$$
\begin{gathered}
\tan \left|\Delta \mathrm{S}_{\mathrm{t}}\right| \approx\left|\Delta \mathrm{S}_{\mathrm{t}}\right|=\frac{\text { unity }}{\mathrm{r}_{31}}=\frac{1}{\mathrm{r}_{31}}=\left|\mathrm{s}_{\mathrm{t} 1}\right| \\
\therefore \mathrm{S}_{\mathrm{t} 1}=\left|\mathrm{S}_{\mathrm{t} 1}\right| \hat{\mathrm{e}}_{\mathrm{s}_{\mathrm{s} 1}}=\frac{\cos \phi \hat{\mathrm{e}}_{31}-\hat{\mathrm{e}}_{31}}{\mathrm{r}_{31} \sin \phi}
\end{gathered}
$$

this is a vector of specified
length and direction
similarly for atom 2

$$
{\underset{\sim}{\mathrm{t} 2}}=\frac{\cos \phi \hat{\mathbf{e}}_{32}-\hat{\mathbf{e}}_{31}}{\mathrm{r}_{32} \sin \phi}
$$

now for the hard one: atom 3 !

Easy way: impose constraint $\quad \sum_{\alpha} \underset{\sim}{S_{t \alpha}}=0$

$$
\therefore{\underset{\sim}{\mathrm{t}} 3}^{\mathrm{S}_{1}}=-({\underset{\sim}{\mathrm{L} 1}}+\underset{\sim}{\mathrm{S} 2})=\frac{\left(\mathrm{r}_{31}-\mathrm{r}_{32} \cos \phi\right) \hat{\mathrm{e}}_{31}+\left(\mathrm{r}_{32}-\mathrm{r}_{31} \cos \phi\right) \hat{\mathrm{e}}_{32}}{\mathrm{r}_{31} \mathrm{r}_{32} \sin \phi}
$$

Hard way: move atom 31 unit in optimal direction, then translate deformed molecule rigidly to put atom 3 back at its original position. This evidently leaves atoms 1 and 2 displaced by ${\underset{\sim}{t} 1}$ and $\underset{\sim}{s}{ }_{\mathrm{t} 2}$ respectively.

This obviously satisfies $\sum_{\alpha}{\underset{\sim}{t \alpha}}=0$
It is harder to show that it also satisfies $0=\sum \overrightarrow{\mathrm{R}}_{\alpha}^{\mathrm{e}} \times{\underset{\sim}{\mathrm{t} \alpha}}$.
Grind out the algebra! (see Non-Lecture on next page)

Alternative definition of $S_{\Delta \theta}$ as a linear displacement rather than an angular displacement is possible.
e.g. $\quad r_{31} \Delta \phi, r_{32} \Delta \phi$, or $\left(r_{31} r_{32}\right)^{1 / 2} \Delta \phi$.

Then $S_{\Delta \phi}$ would have dimension of length and all bending force constants would have same units as stretching ones. The derivation of $S_{\Delta \phi}$ would follow same path, but each ${\underset{\tau}{\alpha}}$ gets multiplied by the relevant length factor, r_{31} or r_{32} or $\left(\mathrm{r}_{31} \mathrm{r}_{32}\right)^{1 / 2}$.

NON-LECTURE

Proof that ${\underset{\sim}{t}}^{s}$'s satisfy Eckart Condition

$$
\begin{aligned}
& {\underset{\mathrm{s}}{\mathrm{t} 1}}=\frac{\cos \phi \hat{\mathrm{e}}_{31}-\hat{\mathrm{e}}_{32}}{\mathrm{r}_{31} \sin \phi} \\
& {\underset{\mathrm{~s} t 2}{ }=\frac{\cos \phi \hat{\mathrm{e}}_{32}-\hat{e}_{31}}{\mathrm{r}_{32} \sin \phi}}_{{\underset{\mathrm{s}}{ } \mathrm{t} 3}=\frac{\left(\mathrm{r}_{31}-\mathrm{r}_{32} \cos \phi\right) \hat{e}_{31}+\left(\mathrm{r}_{32}-\mathrm{r}_{31} \cos \phi\right) \hat{\mathrm{e}}_{32}}{\mathrm{r}_{31} \mathrm{r}_{32} \sin \phi}}
\end{aligned}
$$

$0 \stackrel{?}{=} \mathrm{R}_{1}^{\mathrm{e}} \times \mathrm{s}_{\mathrm{t} 1}+\mathrm{R}_{2}^{\mathrm{e}} \times{\underset{\sim}{\mathrm{t} 2}}+\mathrm{R}_{3}^{\mathrm{e}} \times{\underset{\sim}{\mathrm{t}} 3}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{R}}_{3}=\overrightarrow{\mathrm{R}}_{2}+\overrightarrow{\mathrm{R}}_{23} \\
& \overrightarrow{\mathrm{R}}_{3}=\overrightarrow{\mathrm{R}}_{1}+\overrightarrow{\mathrm{R}}_{13}
\end{aligned}
$$

$0 \stackrel{?}{=}\left(\vec{R}_{3}-\vec{R}_{13}\right) \times{\underset{\sim}{t 1}}+\left(\vec{R}_{3}-\vec{R}_{23}\right) \times \mathrm{S}_{\mathrm{t} 2}+\overrightarrow{\mathrm{R}}_{3} \times \mathrm{S}_{\mathrm{t} 3}$
$0 \stackrel{?}{=} \vec{R}_{3} \times \underbrace{\left(\mathrm{s}_{11}+{\underset{\mathrm{s}}{2} 2}^{\mathrm{s}_{2}} \mathrm{~s}_{\mathrm{t} 3}\right.}_{=0})-\left(\overrightarrow{\mathrm{R}}_{13} \times{\underset{\sim}{\mathrm{t} 1}}+\overrightarrow{\mathrm{R}}_{23} \times{\underset{\sim}{\mathrm{t}} 2}\right)$

$$
\begin{gathered}
\overrightarrow{\mathrm{R}}_{13} \times \hat{\mathrm{e}}_{31}=0 \quad \overrightarrow{\mathrm{R}}_{23} \times \hat{\mathrm{s}}_{32}=0 \\
0 \stackrel{?}{=} \overrightarrow{\mathrm{R}}_{13} \times\left(\frac{-\hat{e}_{32}}{\mathrm{r}_{31} \sin \phi}\right)-\overrightarrow{\mathrm{R}}_{23} \times\left(\frac{-\hat{\mathrm{e}}_{31}}{\mathrm{r}_{32} \sin \phi}\right) \\
\overrightarrow{\mathrm{R}}_{13} \times \hat{\mathrm{e}}_{32}=\mathrm{r}_{31} \hat{\mathrm{e}}_{13} \times \hat{\mathrm{e}}_{32}=-\mathrm{r}_{31} \hat{\mathrm{e}}_{31} \times \hat{\mathrm{e}}_{32} \\
\overrightarrow{\mathrm{R}}_{23} \times \hat{\mathrm{e}}_{31}=\mathrm{r}_{32} \hat{e}_{23} \times \hat{\mathrm{e}}_{31} \quad \text { QED }
\end{gathered}
$$

G-Matrix

$$
\mathrm{G}_{\mathrm{tt}^{\prime}}=\sum_{\alpha=1}^{\mathrm{N}} \frac{1}{\mathrm{~m}_{\alpha}} \mathrm{S}_{\mathrm{t} \alpha} \times \mathrm{S}_{\mathrm{t}^{\prime} \alpha}
$$

Could compute directly from ${\underset{\sim}{t \alpha}}$'s, but easier to use diagrams from WDC page 304 and table on WDC, page 305.

TABLE

$$
\begin{array}{lr}
\mathrm{G}_{\mathrm{rr}}^{2}=\mu_{1}+\mu_{2} & \mu_{\alpha} \equiv \frac{1}{\mathrm{~m}_{\alpha}} \\
\mathrm{G}_{\mathrm{rr}}^{1}=\mu_{1} \mathrm{c} \phi & \mathrm{c} \phi \equiv \cos \phi \\
\mathrm{G}_{\phi \phi}^{3}=\rho_{12}^{2} \mu_{1}+\rho_{23}^{2} \mu_{3}+\left(\rho_{12}^{2}+\rho_{23}^{2}-2 \rho_{12} \rho_{23} \mathrm{c} \phi\right) \mu_{2} \\
\mathrm{\rho}_{\mathrm{ij}} \equiv\left(\mathrm{r}_{\mathrm{r} \mathrm{e}}\right)^{-1} \\
\mathrm{G}_{\mathrm{r} \phi}^{2}=-\rho_{23} \mu_{2} \mathrm{~s} \phi & \mathrm{~s} \phi=\sin \phi
\end{array}
$$

cis bent acetylene

$\begin{array}{ccc}\mathrm{G}:()_{\mathrm{rr}} \mathrm{G}_{\mathrm{rr}}^{2} & \mathrm{G}_{\mathrm{rr}}^{1} & 0 \\ \text { (2) } & \mathrm{G}_{\mathrm{rr}}^{2} & \mathrm{G}_{\mathrm{rr}}^{1}\end{array}$

$\mathrm{G}_{\mathrm{rr}}^{2}$

$G_{\phi \phi}^{3}$

$G_{\phi \phi}^{3}$
(6)

$$
\mathrm{G}_{\tau \tau}^{4}
$$

See J. C. Decius Journal of Chemical Physics 161025 (1948)! for torsion and out of plane bend distortions!

