5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #24: Pure Rotation Spectra of Polyatomic Molecules

Last time: Asymmetric tops

$$\mathbf{H}^{\text{ROT}} = \left[\overline{B}J(J+1) + \begin{pmatrix} A - \overline{B} \\ C - \overline{B} \end{pmatrix} K^2 \right] |JK\rangle \langle JK| + \begin{pmatrix} B - C \\ A - B \end{pmatrix} \frac{1}{4} [(J \mp K)(J \mp K - 1)(J \pm K + 2)(J \pm K + 1)]^{1/2} |JK\rangle \langle JK \pm 2|$$

asymmetry parameter $\kappa \equiv \frac{2B - A - C}{A - C}$

prolateB = C $\kappa = -1$ oblateA = B $\kappa = +1$ most asymmetric $B = \frac{A + C}{2}$ $\kappa = 0$

Perturbation Theory: $\frac{H'_{JK,JK\pm 2}}{\Delta E^{\circ}} = \frac{1}{\kappa} f(J,K)$

Factor \mathbf{H}^{ROT} into four blocks — can label these blocks according to whether K_p and K_o (or K_a and K_c) are even or odd

e,e	e,o	o,e	0,0	correspond to rotational symmetry species –
				good quantum numbers
				[not related to geometric symmetry operations
				applied to rigid molecule].

TODAY

pure rotation spectra

SYMMETRIC TOP $\rightarrow M_x = M_y = 0$, $\Delta K = 0$ like diatomic. Only get information about B from pure rotation spectrum.

ASYMMETRIC TOP \rightarrow M ca	n have 1, 2, or 3 non-zero com	ponents
Transition	ΔK_{p}	ΔK_{o}
a-type	even	odd
b-type	odd	odd
c-type	odd	even
NOTATION/ASSIGNMENT		

BODY COMPONENT $b \rightarrow (a, b, or c)$

 $K \leftrightarrow \Omega$

<u>Symmetric Tops</u> - can't have nonzero dipole \perp to unique axis: z

$$E_{ROT} = BJ(J+1) + \begin{pmatrix} A-B \\ C-B \end{pmatrix} K^{2}$$

identical BJ(J + 1) stacks shifted by
$$\begin{pmatrix} A - B \\ C - B \end{pmatrix} K^2$$

no inter-stack transitions no information about other rotational constants

 $\Delta E_{JK\leftrightarrow J-1K} = 2BJ$

(small splittings due to centrifugal distortion

$$E_{JK} = E_{JK}^{\circ} - D_J J^2 (J+1)^2 - D_{JK} J (J+1) K^2 - D_K K^4)$$

but these give no information about A or C!

 $\begin{array}{l} \mbox{Get information about } \left\{ \begin{array}{l} \mbox{other rotational constants} \\ \mbox{equilibrium structure} \end{array} \right\} from IR and UV spectra \\ \mbox{or from isotopomers} \end{array} \\ \mbox{i^4NH}_3 \ {}^{15}\mbox{NH}_3 \ {}^{14}\mbox{ND}_3 \ \mbox{etc.} \ \ \ \mbox{and from non-symmetric species (non-symmetric tops!)} \end{array} \right.$

<u>Asymmetric Tops</u> - more than 1 component of \vec{M} can be nonzero.

 $K \neq 0$ levels split by asymmetry splitting. Same ${}^{\Delta K}\Delta J$ type transitions from different K's not superimposed. No resemblance to diatomic molecule spectrum!

	symmetry label - C ₂ about specified axis		
	(prolate axis oblate axis)		
J _{KK}	e or o , e or o		
	$\begin{pmatrix} K_p & K_o \end{pmatrix}$		

M_a (e, o)

- M_b (0, 0)
- M_c (0, e)

This is not matrix multiplication. It is just a summary of possibilities.

integrand must be (e, e) with respect to both K_p and K_o for integral to be $\neq 0$				
a-type selection rule	$\Delta K_a = even$	$\Delta K_c = odd$		
b-type selection rule	$\Delta K_a = odd$	$\Delta K_{c} = odd$		
c-type selection rule	$\Delta K_a = odd$	$\Delta K_{c} = even$		
Want ΔK to be as small as possible.	0 or ± 1 for near symmetry axis.	, ± 2 or ± 3 possible for other axes.		

 K_p and K_o are (related to) <u>symmetry labels</u>. Only one of these two quantum numbers is an almost good projection quantum number.

 $\Delta J = 0$ strong or weak depending on whether $\Delta K_{\text{near sym}} = \pm 1$ or 0.

near prolate

near oblate

a	II	$\Delta J = 0$ weak $\Delta K_a = 0$	\bot	$\Delta J = 0$ strong $\Delta K_c = \pm 1$
b	⊥	$\Delta J = 0$ strong $\Delta K_a = \pm 1$	⊥	$\Delta J = 0$ strong $\Delta K_c = \pm 1$

 $\begin{array}{ccc} \mathbf{c} & \perp & \Delta J = 0 \text{ strong} & \parallel & \Delta J = 0 \text{ weak} \\ & \Delta K_a = \pm 1 & & \Delta K_c = \pm 0 \end{array}$

Can decide whether the other asymmetry doublet transition is at higher or lower frequency. Asymmetry splitting is largest for largest J–K: $v({}^{q}R_{a}(3_{1,2})) > v({}^{q}R_{a}(3_{1,3}))$. I am not sure that qualitative predictions can be made when $\Delta K = \Delta J$.

A lot of information about expected patterns can be deduced from qualitative prolate \leftrightarrow oblate correlation diagram and simple transition intensity ideas.

NON-LECTURE

Table of transition intensities in Townes and Schawlow, pages 557-612 (similar to diatomic M-averaged rotational linestrength factors).

$$^{x}S_{J_{k\ell}J'_{mn}}(\kappa) \equiv 10^{4}(2J+1) \left| \left\langle J_{k\ell} \left| M_{x}\alpha_{x\overline{S}} \right| J'_{mn} \right\rangle \right|^{2}$$

$$\overset{\text{Iisted for}}{\underset{\kappa=\pm 1,\pm 0.5,0}{\overset{\text{Iisted for}}{\overset{\text{Iisted for}}{\overset{\text{K}=\pm 1,\pm 0.5,0}{\overset{\text{K}=\pm 1,\pm 0.5,0}{\overset{$$

Transitions are listed by sub-branch and labeled by lower state quantum numbers. Notation for rotational level and rotational transition.

$$J_{\substack{K_{p}K_{o}\\ \downarrow\\K_{-1} K_{+1}}}^{x} R_{\Delta K_{p}\Delta K_{o}} \left(J_{K_{p},K_{o}}\right)$$

2 left columns in T and S table are for upper sign of κ

2 right columns in T and S table are for lower sign of $\boldsymbol{\kappa}$

But we are modern and have computers. How to do it?

* specify A, B, C

* diagonalize
$$\mathbf{H}^{\text{ROT}} \begin{cases} E \left(J_{K_p K_o} \right) \\ \Psi_{J_{K_p K_o}} \end{cases}$$

* evaluate $M_b \alpha_{bS}$ matrix elements following Hougen, pp. 32-41 (especially 37-41) * sum over M_J components

What does actual microwave spectrum look like?

Complicated $J \rightarrow 2J + 1$ sublevels for each J Many rotational branches No obvious pattern for Q branches

Do H₂CO instead of NO₂. Which is a, b, c oblate or prolate? (possibility of switch to oblate?) where is μ ? what is type? selection rules?

Example: NO₂

light axis: a, || to O—O direction (through center of mass) heavy axis: c, \perp to plane $\therefore \mu$ is || b axis

Special relationship for planar molecules

$$\frac{1}{A} + \frac{1}{B} = \frac{1}{C}$$

inertial defect: $-\left(\frac{1}{A_e} + \frac{1}{B_e} - \frac{1}{C_e}\right) = +5.6 \times 10^{-3}$ (not quite 0 because v = 0 not _e constants used

<u>b-type transitions</u>: $\Delta K_p = \text{odd}, \Delta K_o = \text{odd}, \Delta J = 0 \text{ strong}, \Delta J = \pm 1$

types of	${}^{\mathrm{p}}\mathbf{P}$	PQ	^p R	^r P	^r Q	^r R
branches	downward	downward	downward at low J	upward at low J	upward	upward

 ${\sim}3$ upward transitions for each $\,J_{K_{a}K_{c}}^{}$

 \sim 3(2J + 1) upward transitions for each J

* Look for patterns

series of lines spaced by $\sim 2\overline{B}$ (R-branches) also repeated K-stack spacings pairs of lines corresponding to asymmetry doublets (R-branches) size of asymmetry splitting - large for large J–K absence of asymmetry splitting : K = 0 \leftrightarrow 0, 1 \leftrightarrow 0, 0 \leftrightarrow 1

* T-dependence

high \mathbf{E}^{ROT} lines increase in intensity rapidly as T[↑] low \mathbf{E}^{ROT} lines decrease in intensity slightly as T[↑]

* guess structure and compute spectrum - frequencies and relative intensities

* tricks:

Stark (ε-field) modulation

picks out low-J lines where asymmetry splitting is small $J \approx K$

Double Resonance — bootstrap — transfer one assignment to neighboring linked transitions

Recall, for planar molecule there are only 2 independent bits of information. 2 correct assignments lead to accurate prediction of entire spectrum.

* isotope shifts. Change mass of atom that lies on one a, b, or c axis - corresponding rotational constant unchanged, others affected!