MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#24: Pure Rotation Spectra of Polyatomic Molecules

Last time: Asymmetric tops

$$
\begin{aligned}
\mathbf{H}^{\mathrm{ROT}} & \left.=\left[\overline{\mathrm{B}} \mathrm{~J}(\mathrm{~J}+1)+\binom{\mathrm{A}-\overline{\mathrm{B}}}{\mathrm{C}-\overline{\mathrm{B}}} \mathrm{~K}^{2}\right] \mathrm{JK}\right\rangle\langle\mathrm{JK}| \\
& +\binom{\mathrm{B}-\mathrm{C}}{\mathrm{~A}-\mathrm{B}} \frac{1}{4}[(\mathrm{~J} \mp \mathrm{~K})(\mathrm{J} \mp \mathrm{~K}-1)(\mathrm{J} \pm \mathrm{K}+2)(\mathrm{J} \pm \mathrm{K}+1)]^{1 / 2}|\mathrm{JK}\rangle\langle\mathrm{JK} \pm 2|
\end{aligned}
$$

asymmetry parameter $\kappa \equiv \frac{2 \mathrm{~B}-\mathrm{A}-\mathrm{C}}{\mathrm{A}-\mathrm{C}} \quad$ prolate $\quad \mathrm{B}=\mathrm{C} \quad \kappa=-1$
oblate $\quad \mathrm{A}=\mathrm{B} \quad \kappa=+1$
most asymmetric $\quad \mathrm{B}=\frac{\mathrm{A}+\mathrm{C}}{2} \quad \kappa=0$
Perturbation Theory: $\frac{\mathrm{H}_{\mathrm{JK}, \mathrm{JK} \pm 2}^{\prime}}{\Delta \mathrm{E}^{\circ}}=\frac{1}{\kappa} \mathrm{f}(\mathrm{J}, \mathrm{K})$
Factor $\mathbf{H}^{\text {ROT }}$ into four blocks - can label these blocks according to whether K_{p} and K_{o} (or K_{a} and K_{c}) are even or odd

$$
\mathrm{e}, \mathrm{e} \quad \mathrm{e}, \mathrm{o} \quad \mathrm{o}, \mathrm{e} \quad \mathrm{o}, \mathrm{o} \quad \text { correspond to rotational symmetry species - }
$$ good quantum numbers [not related to geometric symmetry operations applied to rigid molecule].

TODAY

pure rotation spectra
SYMMETRIC TOP $\rightarrow \mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{y}}=0, \Delta \mathrm{~K}=0$ like diatomic. Only get information about B from pure rotation spectrum.

ASYMMETRIC TOP $\rightarrow \overrightarrow{\mathrm{M}}$ can have 1,2 , or 3 non-zero components

Transition
a-type
b-type
c-type
NOTATION/ASSIGNMENT

$\boldsymbol{\Delta} \mathbf{K}_{\mathbf{p}}$	$\boldsymbol{\Delta} \mathbf{K}_{\mathbf{o}}$
even	odd
odd	odd
odd	even

$\Delta K_{\text {o }}$
odd odd
even

BODY COMPONENT $b \rightarrow(a, b$, or $c)$
$K \leftrightarrow \Omega$
Symmetric Tops - can't have nonzero dipole \perp to unique axis: z

$\mathrm{z} \rightarrow$ a prolate	if there were a $\perp \mu$ component, it would $\mathrm{z} \rightarrow \mathrm{c}$ oblate have to point in same direction after a
"parallel" type transitions only	$\mathrm{C}_{\mathrm{n}}(\mathrm{z})$ or $\mathrm{S}_{\mathrm{n}}(\mathrm{z})$ operation. $\mu_{\perp}=0$ for $\mathrm{n} \geq 2$. $\Delta \mathrm{K}=0, \Delta \mathrm{~J}= \pm 1$$(\Delta \mathrm{~J}=0$ weak, except for $\mathrm{J}=\mathrm{K})$

$\mathrm{E}_{\text {Rот }}=\mathrm{BJ}(\mathrm{J}+1)+\binom{\mathrm{A}-\mathrm{B}}{\mathrm{C}-\mathrm{B}} \mathrm{K}^{2}$
identical $\operatorname{BJ}(J+1)$ stacks shifted by $\binom{A-B}{C-B} K^{2}$ no inter-stack transitions
$\Delta \mathrm{E}_{\mathrm{JK} \leftrightarrow-\mathrm{IK}}=2 \mathrm{BJ}$
(small splittings due to centrifugal distortion

$$
\left.\mathrm{E}_{\mathrm{JK}}=\mathrm{E}_{\mathrm{JK}}^{\mathrm{o}}-\mathrm{D}_{\mathrm{J}} \mathrm{~J}^{2}(\mathrm{~J}+1)^{2}-\mathrm{D}_{\mathrm{JK}} \mathrm{~J}(\mathrm{~J}+1) \mathrm{K}^{2}-\mathrm{D}_{\mathrm{K}} \mathrm{~K}^{4}\right)
$$

but these give no information about A or C !
Get information about $\left\{\begin{array}{l}\text { other rotational constants } \\ \text { equilibrium structure }\end{array}\left\{\begin{array}{l}\text { from IR and UV spectra } \\ \text { or from isotopomers }\end{array}\right.\right.$
${ }^{14} \mathrm{NH}_{3}{ }^{15} \mathrm{NH}_{3}{ }^{14} \mathrm{ND}_{3}$ etc. and from non-symmetric species (non-symmetric tops!)
Asymmetric Tops - more than 1 component of $\overrightarrow{\mathrm{M}}$ can be nonzero.
$K \neq 0$ levels split by asymmetry splitting.
Same ${ }^{\Delta \mathrm{K}} \Delta \mathrm{J}$ type transitions from different K 's not superimposed.
No resemblance to diatomic molecule spectrum!

\[

\]

This is not matrix multiplication. It is just a summary of possibilities.
integrand must be (e, e) with respect to both K_{p} and K_{o} for integral to be $\neq 0$
a-type selection rule
b-type selection rule
$\Delta K_{a}=$ even
$\Delta \mathrm{K}_{\mathrm{c}}=$ odd
c-type selection rule
$\Delta \mathrm{K}_{\mathrm{a}}=$ odd
$\Delta \mathrm{K}_{\mathrm{c}}=$ odd
$\Delta \mathrm{K}_{\mathrm{a}}=$ odd
$\Delta K_{c}=$ even
Want $\Delta \mathrm{K}$ to be as small as possible. 0 or ± 1 for near symmetry axis, ± 2 or ± 3 possible for other axes.
K_{p} and K_{o} are (related to) symmetry labels. Only one of these two quantum numbers is an almost good projection quantum number.
$\Delta \mathrm{J}=0 \underline{\text { strong }}$ or weak depending on whether $\Delta \mathrm{K}_{\text {near sym }}= \pm \underline{1}$ or 0.
near prolate
a \| $\quad \begin{aligned} & \Delta \mathrm{J}=0 \text { weak } \\ & \Delta \mathrm{K}_{\mathrm{a}}=0\end{aligned}$
b $\quad \perp \quad \Delta \mathrm{J}=0$ strong $\Delta \mathrm{K}_{\mathrm{a}}= \pm 1$
c $\quad \perp$

$$
\begin{aligned}
& \Delta \mathrm{J}=0 \text { strong } \\
& \Delta \mathrm{K}_{\mathrm{a}}= \pm 1
\end{aligned}
$$

near oblate
$\perp \quad \Delta \mathrm{J}=0$ strong $\Delta \mathrm{K}_{\mathrm{c}}= \pm 1$
$\perp \quad \Delta \mathrm{J}=0$ strong $\Delta \mathrm{K}_{\mathrm{c}}= \pm 1$
\| $\Delta \mathrm{J}=0$ weak
$\Delta \mathrm{K}_{\mathrm{c}}= \pm 0$

NOTATION examples

$$
\text { expressed as ...nopqrst... }
$$

$\Delta \mathrm{K}_{\mathrm{p} \text { or }{ }^{\circ}} \Delta \mathrm{J}_{\mathrm{a} \text { or b or c }} \quad\left(\mathrm{J}_{\mathrm{K}_{\mathrm{p}}}, \mathrm{J}_{\mathrm{K}_{\mathrm{o}}}\right)$ near prolate near oblate
${ }^{\mathrm{q}} \mathrm{R}_{\mathrm{a}}\left(3_{1,2}\right) \quad{ }^{\mathrm{r}} \mathrm{R}_{\mathrm{a}}\left(3_{1,2}\right)$

Can decide whether the other asymmetry doublet transition is at higher or lower frequency. Asymmetry splitting is largest for largest J-K: $\quad v\left({ }^{q} R_{a}\left(3_{1,2}\right)\right)>v\left({ }^{9} R_{a}\left(3_{1,3}\right)\right)$.
I am not sure that qualitative predictions can be made when $\Delta \mathrm{K}=\Delta \mathrm{J}$.
A lot of information about expected patterns can be deduced from qualitative prolate \leftrightarrow oblate correlation diagram and simple transition intensity ideas.
NON-LECTURE
Table of transition intensities in Townes and Schawlow, pages 557-612 (similar to diatomic M-averaged rotational linestrength factors).

Transitions are listed by sub-branch and labeled by lower state quantum numbers. Notation for rotational level and rotational transition.

2 left columns in T and S table are for upper sign of κ
2 right columns in T and S table are for lower sign of κ
But we are modern and have computers. How to do it?

* specify $\mathrm{A}, \mathrm{B}, \mathrm{C}$
* diagonalize $\mathbf{H}^{\mathrm{ROT}}\left\{\begin{array}{c}\mathrm{E}\left(\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{\mathrm{o}}}\right) \\ \psi_{\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{\mathrm{o}}}}\end{array}\right.$
* evaluate $\mathrm{M}_{\mathrm{b}} \mathrm{\alpha}_{\mathrm{bs}}$ matrix elements following Hougen, pp. 32-41 (especially 37-41)
* sum over M_{J} components

What does actual microwave spectrum look like?
Complicated $\mathrm{J} \rightarrow 2 \mathrm{~J}+1$ sublevels for each J
Many rotational branches
No obvious pattern for Q branches

Do $\mathrm{H}_{2} \mathrm{CO}$ instead of NO_{2}.

Which is a, b, c
oblate or prolate? (possibility of switch to oblate?)
where is μ ? what is type? selection rules?

Example: NO_{2}

$$
\kappa \equiv \frac{2 \mathrm{~B}-\mathrm{A}-\mathrm{C}}{\mathrm{~A}-\mathrm{C}}
$$

$\mathrm{A}_{0}=8.0012 \mathrm{~cm}^{-1}$
$\mathrm{B}_{0}=0.43364$
$\mathrm{C}_{0}=0.41040$
$\kappa=-0.8857$ (near prolate)
μ is in-plane \perp to $\mathrm{O}-\mathrm{O}$ direction

light axis: $\quad \mathrm{a}, \|$ to $\mathrm{O}-\mathrm{O}$ direction (through center of mass)
heavy axis:
c, \perp to plane
$\therefore \mu$ is $\| \mathrm{b}$ axis

Special relationship for planar molecules

$$
\frac{1}{\mathrm{~A}}+\frac{1}{\mathrm{~B}}=\frac{1}{\mathrm{C}}
$$

inertial defect: $-\left(\frac{1}{\mathrm{~A}_{\mathrm{e}}}+\frac{1}{\mathrm{~B}_{\mathrm{e}}}-\frac{1}{\mathrm{C}_{\mathrm{e}}}\right)=+5.6 \times 10^{-3}$
(not quite 0 because $\mathrm{v}=0$ not ${ }_{\mathrm{e}}$ constants used
b-type transitions: $\quad \Delta \mathrm{K}_{\mathrm{p}}=$ odd,$\Delta \mathrm{K}_{\mathrm{o}}=$ odd, $\Delta \mathrm{J}=0$ strong, $\Delta \mathrm{J}= \pm 1$

types of	${ }^{\text {P }} \mathbf{P}$	${ }^{\text {p }} \mathbf{Q}$	${ }^{\mathrm{p}} \mathbf{R}$	${ }^{\text {P }}$	${ }^{\text {r }} \mathbf{Q}$	${ }^{\text {r }}$
branches	downward	downward	downward	upward at	upward	upward
			at low J	low		

~ 3 upward transitions for each $\mathrm{J}_{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{c}}}$
$\sim 3(2 \mathrm{~J}+1)$ upward transitions for each J

How to assign?

* Look for patterns
series of lines spaced by $\sim 2 \overline{\mathrm{~B}}$ (R-branches)
also repeated K -stack spacings
pairs of lines corresponding to asymmetry doublets (R-branches)
size of asymmetry splitting - large for large J-K
absence of asymmetry splitting : $\mathrm{K}=0 \leftrightarrow 0,1 \leftrightarrow 0,0 \leftrightarrow 1$
* T-dependence
high $\mathbf{E}^{\text {ROT }}$ lines increase in intensity rapidly as $\mathrm{T} \uparrow$
low $\mathbf{E}^{\mathrm{ROT}}$ lines decrease in intensity slightly as $\mathrm{T} \uparrow$
* guess structure and compute spectrum - frequencies and relative intensities
* tricks: \quad Stark (ε-field) modulation picks out low-J lines where asymmetry splitting is small $\mathrm{J} \approx \mathrm{K}$
Double Resonance - bootstrap - transfer one assignment to neighboring linked transitions
saturate modulate label

Recall, for planar molecule there are only 2 independent bits of information. 2 correct assignments lead to accurate prediction of entire spectrum.

* isotope shifts. Change mass of atom that lies on one a, b, or c axis - corresponding rotational constant unchanged, others affected!

