MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \# 22 Supplement

See Microwave Spectroscopy by C. H. Townes and A. L. Schawlow, Dover Publications, New York (1975) for complete text of these Appendices.

Contents

A. Appendix III: Coefficients for Energy Levels of a Slightly Asymmetric Top, pp. 522-

526 . 1
B. Appendix IV: Energy Levels of a Rigid Rotor, pp. 527-555 2
C. Appendix V: Transition Strengths for Rotational Transitions, pp. 557-559 2

A. Appendix III: Coefficients for Energy Levels of a Slightly Asymmetric Top, pp. 522-526

SUMMARY

Rotational energy is given by

$$
w=K^{2}+C_{1} b+C_{2} b^{2}+C_{3} b^{3}+C_{4} b^{4}+C_{5} b^{5}+\ldots
$$

For a prolate top, energy $=W=\frac{B+C}{2} J(J+1)+\left(A-\frac{B+C}{2}\right) w$

$$
b=b_{p}=\frac{C-B}{2 A-B-C}
$$

For an oblate top, energy $=W=\frac{A+B}{2} J(J+1)+\left(C-\frac{A+B}{2}\right) w$

$$
b=b_{0}=\frac{A-B}{2 C-B-A}
$$

Where the first few constants $K, C_{1}, C_{2} \ldots$ are identical for pairs of degenerate levels, they are usually listed for only the first of the two levels. (C_{1}, C_{2}, and C_{3} were computed by J. F. Lotspeich; C_{4} and C_{5} by J. Kraitchman and N. Solimene.)

B. Appendix IV: Energy Levels of a Rigid Rotor, pp. 527-555

SUMMARY

Energy (in cycles/sec) $=W / h=\frac{1}{2}(A+C) J(J+1)+\frac{1}{2}(A-C) E_{\tau} . E_{\tau}$ is tabulated as a function of the rotational level $J_{K_{-1} K_{1}}\left(\right.$ or $\left.J_{\tau}\right)$ and of the asymmetry parameter $\kappa=\frac{2 B-A-C}{A-C}$.
Values for positive κ only are tabulated, since those for negative κ can be obtained from the relation $E_{\tau}(\kappa)=-E_{-\tau}(-\kappa)$. For further explanation see Chapter 4.
This table was reproduced with the permission of the Ballistics Research Laboratories, Aberdeen, MD, from Ballistics Research Laboratories Report No. 878 (September, 1953), by T. E. Turner, B. L. Hicks, and G. Reitwiesner. It was prepared for reproduction by S. Poley with the aid of an IBM card-controlled typewriter at the Watson Scientific Computing Laboratory.
Tables of E_{τ} for J up to 40 and values of $\kappa=0,0.1,0.2,0.3, \ldots 1.0$ are given by G. Erlandsson, Arkiv för Fysik, to be published.

C. Appendix V: Transition Strengths for Rotational Transitions, pp. 557-559

SUMMARY

Intensity of a transition between rotational levels $J_{k l}$ and $J_{m n}^{\prime}$ is proportional to

$$
\left(\mu_{x}\right)^{2 x} S_{J_{k l} J_{m n}^{\prime}}(\kappa)=(2 J+1)\left|\left(\mu_{x}\right)_{J_{k l} J_{m n}^{\prime}}\right|^{2}
$$

Here μ_{x} is the dipole moment along one of the principal axes of inertia $(x=a, b$ or $c)$, and S is the quantity tabulated here as a function of initial and final state and of the asymmetry parameter κ. However, each value has been multiplied by 10^{4} to eliminate decimal points. The upper sign for values of K applies to transition subbranches listed in the two left-hand columns, and the lower sign to those in the right-hand columns. The axis along which a dipole moment is required to produce a given transition is indicated by a superscript to the left of the subbranch designation. Thus ${ }^{c} Q_{10}$ indicates a Q branch $(\Delta J=0)$ with a change in K_{-1} of 1 , a change in K_{1} of 0 , and that a dipole moment μ_{c} along the c axis is required for the transition. For further discussion see Chapter 4. [Tables in this appendix are taken from P. C. Cross, R. M. Hainer, and G. W. King, J. Chem. Phys. 12, 210 (1944).]

