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Lecture #20: Transformations between Basis Sets: 3-j, 6-j, and Wigner-Eckart Theorem 

Last time: effects of “Remote Perturbers”. What terms must we add to the effective H so that we 
can represent all usual behaviors with minimum number of parameters. 

Today: A taste of spherical tensor algebra. 

Suppose we want to evaluate matrix elements of HSO for atoms. We have a choice between two basis 
sets: 

coupled |L S J MJ 〉
uncoupled | L ML S MS 〉

If we take the simplified form of HSO 

HSO = ζ(nLS)L ⋅ S = ζ(nLS)⎡
⎣⎢
LzSz + 

1
2 
(L+S− + L−S+ )⎤⎦⎥ , 

we can set up a matrix for HSO in either the coupled or uncoupled basis. One basis is more convenient 
than the other but all necessary matrix elements are explicitly evaluable because all of the quantum
numbers we need to evaluate the matrix elements appear explicitly in either basis set. But 

⎡⎣HSO , J2 ⎤⎦ = 0 ⎡⎣H
SO , Jz ⎤⎦ = 0 

⎡⎣H
SO ,Lz ⎤⎦ ≠ 0 ⎡⎣H

SO ,Sz ⎤⎦ ≠ 0 . 

This means that HSO is fully diagonal in | L S J MJ〉 but massively off-diagonal in | L ML S MS 〉. We see 
that HSO is diagonal in |LSJMJ〉 here: 

J = L + S 

J2 = L2 + S2 + 2L ⋅ S 

L ⋅ S = 
2
1 (J2 − L2 − S2 ) 

LSJMJ HSO LSJMJ = 
1
2 
ζ(nLS)[J(J + 1) − L(L + 1) − S(S + 1) ]. 

There are cases when it is not possible to evaluate matrix elements in the “wrong” basis set because the
necessary quantum numbers do not appear explicitly in the basis set. A famous example is the Zeeman
Hamiltonian that cannot be expressed in the coupled basis set, which is best for HSO. 
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HZeeman = µBohr [LZ + 2SZ ]BZ (BZ  is magnetic field) 

LSJMJ LZ L SJ′ = ?′ M′J 

So we need to transform between coupled and uncoupled basis sets 

transformation coefficient 

LMLSMS LSJMJLSJMJ = ∑ LMLSMS . 

What do we sum over? 

completeness 

We are replacing J (range |L – S| ≤ J ≤ L + S, that includes 2L + 1 or 2S + 1 values of J, whichever is
smaller) in the coupled representation by MS (MS = MJ – ML) (range –S ≤ MS ≤ S, that includes 2S + 1 or
2L + 1 values, whichever is smaller). 

S

LSJMJ = ML + MS
 LMLSMS LSJMJ= ∑ LMLSMS 

MS =−S 
(L≥S) 

and, in the reverse direction,

L+S


LMLSMS = MJ − ML
 LSJMJ LMLSMS = MJ − ML= ∑ LSJMJ . 
J= L−S 

The transformation coefficients are universal. It does not matter what kinds of angular momenta are
involved. All that matters is that each angular momentum is defined by the standard angular
momentum commutation rule. 

⎡⎣Ai,A j ⎤⎦ = i∑εijkAk. 
k 

So we can expect these transformation coefficients to be tabulated. The most convenient form for the 
transformation coefficients is 3-j coefficients, because of their symmetry properties. 
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= (−1) j1 − j2 −m3 (2 j3 + 1)1/2 ⎛
⎝⎜ m

j1
1 m

j2
2 m3 = 

j3 
−m1 − m2 

⎞
⎠⎟

j1m1j2m2 j1j2 j3 − m3 ≡ m1 + m2 

m1 + m2 + m3 ≡ 0 
j1 − j2 ≤ j3 ≤ j1 + j2	 (triangle rule ) 

For example 

L+S	 L S J
LMLSMS = ∑ LSJMJ = ML + MS (−1)L−S+ML +MS (2J + 1)1/2 ⎛

⎝⎜ ML MS −(ML + MS ) 
⎞
⎠⎟ 

. 
J= L−S   

3− j 

All basis set transformations may be broken down into a series of coupled↔decoupled↔recoupled
transformations. Two examples: 

1.	 Hyperfine: nuclear spin I
total angular momentum F = J + I = L + S + I 
total spin G = S + I 

two routes to F, F = J + I

F = G + L


(there is one other route) F = (L + I) + S (never used)


whenever 3 angular momenta are coupled to form a fourth, there will always be 3 coupling schemes.
Often one is particularly convenient. Suppose a hyperfine coupling term aI · S is larger than the spin-
orbit term AL · S (perhaps because L = 0), then 

G = I + S 

I ⋅ S = 
2
1 [G2 − I2 − S2 ]. 

This means that the |LSIGFMF〉 basis is more convenient than the |LSJIF〉 basis set. 

2. Molecular Rydberg states, Watson’s 

basis set.(ion-core)+ (Rydberg e− )(combined core and Rydberg angular momenta)

The ion-core can be in Hunds cases a+, b+, c+, respectively 

a+: |(L+)Λ+ S+ ∑+ J+ Ω+ 〉

b+: |(L+)Λ+ S+ N+ J+ 〉

c+: |(L+) S+ (Ja+ )  R+ J+〉
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and the Rydberg electron can be in any Hund’s case, but since spin-orbit for a Rydberg electron is
always small, cases a and c are irrelevant. Usually one is concerned about cases b and d, and e when the
ion-core is in case a+. 

Many angular momenta are being coupled together in various sequences. 

We need a way to deal with transformations between different coupling sequences. 

Suppose we have 3 angular momenta coupled together to make a total angular momentum. We have 3 
different coupling sequences. 

j1j2 j3j1,2 ( j1 + j2 )JMJ 

j1j2 j3j1,3 ( j1 + j3)JMJ 

j1j2 j3j2,3 ( j2 + j3 )JMJ 

To transform between any two of these we need to perform two coupled→uncoupled transformations
followed by two uncoupled→coupled transformations. 

For example: 

→j1j2 j3j12JMJ j1j2 j3m3j12m12 = MJ − m3 
uncouple

j3 from j12

(kill J)


→ j1m1j2m2 = m12 − m1j3m3 = MJ − m1 − m2

uncouple
j1 from j2
(kill j12) 

→ → j1j2 j3j13JMJj1j2m2 j3 j13m13 
couple

couple j2 to j13j1 to j3 (create J) 
(create j13) 

This sequence of transformations requires four sums over a product of four 3-j coefficients. These four 
transformations may be re-expressed as one transformation by exploiting 6-j coefficients. 
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j1 + j3 

∑
j1j2 j3 j12JMJ
 j1j2 j3 j13JMJ
 j1j2 j3 j13JMJ j1j2 j3 j12JMJ=

j1 − j3j13 = 

≡ (−1) j1 + j2 + j3 +J [(2 j12 + 1)(2 j13 + 1) ]1/2 j1j2 j3j13JMJ j1j2 j3j12JMJ 
⎧
⎨
⎩


j1 j2 j3

j3 J j12


⎫
⎬
⎭


four one for one 
unchanged replacement
quantum
numbers 

The 6-j coefficients are invariant with respect to all six permutations of columns and to all upper/lower
permutations within each of two columns. This is a total of 6 × 4 = 24 permutations. 

There are some details about reversed angular momenta that affect the use of 3-j and 6-j coefficients. I 
do not fully understand these details. CAUTION! 

Next we ask about evaluating matrix elements. We classify operators according to their spherical tensor
character with respect to various angular momenta. 

⎡Jz,Tµ
(ω) 

⎦⎤ = µTµ
(ω)


⎣

⎡ (ω) ⎤ ]1/2 Tµ

(ω
±1
)

⎣J± ,Tµ ⎦ = [ω(ω + 1) − µ(µ ± 1) 

ω is the rank and µ is the component. The Tµ
(ω)  are analogous to an angular momenta of magnitude, ω, 

and z-component, µ. Since the spherical tensor classification of the operator does not depend on the
specific nature of the operator, one expects that some sort of general statement might be made about 
matrix elements of Tµ

(ω)  operators in a |JMJ〉 basis set. This is the Wigner-Eckart Theorem, 

N′j′ T(k) Nj .m′N′j′m′ Tµ
(ω) Njm = (−1) j′−

⎝⎜
⎛
−
j′ 
m′

ω 
µ m

j 
⎠⎟
⎞ 

The non-zero matrix elements must satisfy the selection rule and triangle condition. 

–m′ + µ + m = 0 OR µ = m′ – m

|j′ – ω| ≤ j ≤ j′ + ω


N′, N are all “other” quantum numbers needed to specify a state. N′j′ T(k) Nj  is called a reduced 
matrix element. All projection (component) quantum numbers have been “removed” via the Wigner-
Eckart Theorem. 
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In order to use the Wigner-Eckart Theorem most effectively it is necessary to learn how to do two
things: 

1. Decompose Tµ
(ω) (A,B)  in terms of products of tensor components of A and B. For 

example, H is a scalar quantity (T0(0) )  with respect to the total angular momentum. If 
A,B are vector operators: 

1 
T0
(0) (A,B) = ∑ Ai ⋅ Bi = ∑ (−1)µAµ ⋅ B−µ (e.g. H)

i=x,y,z µ=−1 

T±
(1) 
1 (A,B) = A±1B0 − A0B±1


T0
(1) (A,B) = A1B−1 − A−1B1

(2) A,BT±2 ( ) = A±1B±1 
(2) (A,B) = A±1B0 + A0B±1T±1


T0
(2) (A,B) = 2A0B0 + A1B−1 + A−1B1


where A0 = Az, A±1 = 2–1/2(Ax ± iAy). 

More generally, for combinations of tensorial operators 

Tµ
(ω) (A1,A2 ) = ∑(−1)ω1 −ω2 −µ(2ω + 1)1/2 

⎝⎜
⎛ω
µ1
1 
µ2 = 

ω
µ
2 
− µ1 

ω
−µ⎠⎟

⎞ Tµ
(ω
1 

1 ) (A1)Tµ
(ω
−
2

µ
)
1 
(A2 ) 

2. Uncouple the basis functions into factors operated on exclusively by Tµ
(ω
1

1 ) (A1)  and 

Tµ
(ω
2

2 ) (A2 ) . For example: 

1 
HSO = ∑ T0

(0) (a(ri i,si ) = ∑ ∑ (−1)µTµ(1) (a(ri i )T−(1) µ(si )
i i µ=−1 

electrons 
and the matrix elements are 

1 
L′M′LS′M′S H

SO LMLSMS L′M′L Tµ
(1)(a(ri i ) LML = M′L + µ= ∑ ∑ 

i µ=−1 

S′M′S T−
(1) 
µ(si ) SMS = MS′ − µ× 

��

�

) )

)


