MIT OpenCourseWare
http://ocw.mit.edu

### 5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Lecture \# 19 Supplement

## Second-Order Effects: <br> Centrifugal Distortion and $\Lambda$-Doubling

Centrifugal distortion originates from vibration-rotation interactions. In other words, it results from the fact that the rotational constant $B$ isn't a constant at all but rather a function of $r$ and as a result can have matrix elements off-diagonal in $v$. Since differences between vibrational energy levels are much larger than differences between rotational energy levels, it is appropriate to introduce corrections to the rotational Hamiltonian matrix elements by second-order perturbation theory involving summations over vibrational levels of the form:

$$
\begin{equation*}
D \equiv \sum_{v^{\prime} \neq v} \frac{\langle v| B(r)\left|v^{\prime}\right\rangle\left\langle v^{\prime}\right| B(r)|v\rangle}{E_{v}-E_{v^{\prime}}} . \tag{1}
\end{equation*}
$$

We must now examine our rotational Hamiltonian matrix to obtain the precise centrifugal distortion corrections appropriate to each of the matrix elements. The simple minded prescription: "Replace $B(r)$ by $B(v)-D(v) J(J+1)$ wherever $B(r)$ occurs" will be shown to be incorrect. We will use the ${ }^{2} \Pi,{ }^{2} \Sigma$ Hamiltonian again as an example.

First consider corrections to the $\left.\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{H}\right|^{2} \Pi_{1 / 2}\right\rangle$ matrix element. The relevant matrix elements off-diagonal in $v$ (but diagonal in $|\Lambda|$ and S ) are

$$
\begin{align*}
& \left\langle v,{ }^{2} \Pi_{1 / 2}^{ \pm}\right| B(r) \mathbf{R}^{2}\left|v^{\prime},{ }^{2} \Pi_{1 / 2}^{ \pm}\right\rangle \\
& \left\langle v,{ }^{2} \Pi_{1 / 2}^{ \pm}\right| B(r) \mathbf{R}^{2}\left|v^{\prime},{ }^{2} \Pi_{3 / 2}^{ \pm}\right\rangle . \tag{2}
\end{align*}
$$

Since our basis functions are actually product functions, and since $B(r)$ only operates on $|v\rangle$ and $\mathbf{R}^{2}$ only operates on $\left|\Pi_{\Omega}^{ \pm}\right\rangle$, we can factor these matrix elements.

$$
\begin{align*}
& \left.\left.\langle v| B(r)\left|v^{\prime}\right\rangle\left\langle{ }^{2} \Pi_{1 / 2}^{ \pm}\right| \mathbf{R}^{2}\right|^{2} \Pi_{1 / 2}^{ \pm}\right\rangle \\
& \left.\left.\langle v| B(r)\left|v^{\prime}\right\rangle\left\langle{ }^{2} \Pi_{1 / 2}^{ \pm}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}^{ \pm}\right\rangle . \tag{3}
\end{align*}
$$

The second order correction to $\left.\left.\left\langle{ }^{2} \Pi_{1 / 2}, v\right| B(r) \mathbf{R}^{2}\right|^{2} \Pi_{1 / 2}, v\right\rangle$ is therefore

$$
\begin{equation*}
E_{1 / 2,1 / 2}^{(2)}=\sum_{v^{\prime}} \frac{\left.\left.\langle v| B(r)\left|v^{\prime}\right\rangle^{2}\left[\left.\left\langle{ }^{2} \Pi_{1 / 2}^{ \pm}\right| \mathbf{R}^{2}\right|^{2} \Pi_{1 / 2}^{ \pm}\right\rangle^{2}+\left.\left\langle{ }^{2} \Pi_{1 / 2}^{ \pm}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}^{ \pm}\right\rangle^{2}\right]}{G(v)-G\left(v^{\prime}\right)} \tag{4}
\end{equation*}
$$

Rewrite (4) using the definition of $D$,

$$
\begin{equation*}
\left.\left.E_{1 / 2,1 / 2}^{(2)}=-D\left[\left.\left\langle{ }^{2} \Pi_{1 / 2}^{ \pm}\right| \mathbf{R}^{2}\right|^{2} \Pi_{1 / 2}^{ \pm}\right\rangle^{2}+\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}\right\rangle^{2}\right] . \tag{5}
\end{equation*}
$$

The first matrix element is the coefficient of $B(v)$ in equation (27) of the previous handout and the second matrix element is the coefficient in (28), thus

$$
\begin{equation*}
E_{1 / 2,1 / 2}^{(2)}=-D\left[\left(J+\frac{1}{2}\right)^{4}+\left[\left(J+\frac{1}{2}\right)^{2}-1\right]\right] . \tag{6}
\end{equation*}
$$

Similar arguments give the centrifugal distortion corrections to the other diagonal matrix elements. For $\left.\left.\left\langle{ }^{2} \Pi_{3 / 2}\right| \mathbf{H}\right|^{2} \Pi_{3 / 2}\right\rangle$ we get

$$
\begin{equation*}
E_{3 / 2,3 / 2}^{(2)}=-D\left\{\left[\left(J+\frac{1}{2}\right)^{2}-2\right]^{2}+\left[\left(J+\frac{1}{2}\right)^{2}-1\right]\right\} . \tag{7}
\end{equation*}
$$

For $\left.\left.\left\langle{ }^{2} \Sigma^{+ \pm}\right| \mathbf{H}\right|^{2} \Sigma^{+ \pm}\right\rangle$we get

$$
\begin{equation*}
E_{\Sigma \Sigma^{+}}^{(2)}=-D\left\{\left(J+\frac{1}{2}\right)^{2} \mp(-1)^{J+S}\left(J+\frac{1}{2}\right)\right\}^{2} . \tag{8}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
E_{\Sigma \Sigma^{-}}^{(2)}=-D\left\{\left(J+\frac{1}{2}\right)^{2} \pm(-1)^{J+S}\left(J+\frac{1}{2}\right)\right\}^{2} . \tag{8a}
\end{equation*}
$$

All that is left now is corrections to off-diagonal matrix elements. The only off-diagonal matrix element for which a centrifugal distortion correction is necessary is $\left.\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{H}\right|^{2} \Pi_{3 / 2}\right\rangle$. The second order correction is

$$
\begin{align*}
E_{1 / 2,3 / 2}^{(2)}=\sum_{v^{\prime}} \frac{\langle v| B(r)\left|v^{\prime}\right\rangle^{2}}{\frac{1}{2}\left[G_{1 / 2}(v)+G_{3 / 2}(v)\right]-\frac{1}{2}\left[G_{1 / 2}\left(v^{\prime}\right)+G_{3 / 2}\left(v^{\prime}\right)\right]} \times \\
{\left.\left.\left.\left.\left.\left[\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}\right\rangle\left\langle{ }^{2} \Pi_{3 / 2}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}\right\rangle+\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{R}^{2}\right|^{2} \Pi_{1 / 2}\right\rangle\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \mathbf{R}^{2}\right|^{2} \Pi_{3 / 2}\right\rangle\right] . } \tag{9}
\end{align*}
$$

Note that the energy denominator of (9) is more complicated than in equation (4), but if the spin-orbit constant $A_{\Pi}$ is independent of $v$, then the energy denominator reduces to $G(v)-G\left(v^{\prime}\right)$. It is possible to
choose this symmetric form for the energy denominator because $G_{3 / 2}(v)-G_{1 / 2}(v) \equiv A(v)$ and typically $|A(v)| \ll G(v)-G(v-1) \equiv \Delta G\left(v-\frac{1}{2}\right)$. Notice that a truncated power series explanation gives

$$
\begin{align*}
& \frac{1}{\Delta G(v)+A} \approx \frac{1}{\Delta G(v)}\left(1-\frac{A}{\Delta G(v)}\right) . \\
& E_{1 / 2,3 / 2}^{(2)}=+D\left[\left(J+\frac{1}{2}\right)^{2}-1\right]^{1 / 2}\left[2\left(J+\frac{1}{2}\right)^{2}-2\right] \tag{10}
\end{align*}
$$

A diagrammatic approach to these second-order corrections makes their derivation mechanical and easily understood.

1. Write down two basis functions on opposite sides of a piece of paper. The second-order corrections to their matrix element of $\mathbf{H}$ is to be obtained.
2. Inspect the matrix elements of $\mathbf{H}$ of the left-hand function with all other basis functions and list in the middle of the page those other basis functions which have non-zero matrix elements with the left-hand function.
3. Draw lines connecting these middle basis functions with the left-hand functions and write above each line the actual matrix element.
4. Examine the Hamiltonian matrix elements of the right-hand function with the middle basis functions. For each non-zero element draw a connecting line and write the matrix element over it.
5. Inspect the completed diagram for all continuous paths from left to right. The second-order corrections are simply products of the matrix elements above the connecting lines divided by an energy denominator of the form

$$
\begin{equation*}
\frac{1}{2}\left(E_{\text {left }}+E_{\text {right }}\right)-E_{\text {middle }}\left(v^{\prime}\right) . \tag{11}
\end{equation*}
$$

I will now use this diagrammatic method to obtain the second-order matrix elements responsible for the lambda doubling in ${ }^{2} \Pi$ states.

All electronic states with $|\Lambda|>0$ have pairs of levels, one for each sign of $\Lambda$. These pairs of levels would be degenerate (exactly the same energy) if we did not consider second-order corrections to the Hamiltonian matrix. The energy separation between these pairs of levels which is introduced by secondorder effects is called the lambda doubling. A typical size for a lambda doubling is $10^{-4} \mathrm{~cm}^{-1}$ although lambda doublings $10^{4}$ times larger or smaller than this are not uncommon. When one chooses a parity basis set, it turns out that the two components of a $\Lambda$ doublet have opposite parity. It also turns out that the existence of a non-zero lambda doubling is due [with one exception: ${ }^{3} \Pi_{0}$ which is substantially due
to spin-spin matrix elements of $\left.\alpha\left(\mathbf{S}_{+}^{2}+\mathbf{S}_{-}^{2}\right)\right]$ to second-order interactions of $\Pi$ states with $\Sigma$ states. The physical reason for this is simple. $\Sigma$ states have $\Lambda=0$, thus second order matrix elements exist which connect basis functions (non-parity basis) with $\Lambda>0$ to functions with $\Lambda<0$. There is a second reason: $\Sigma$ levels, unlike $\Pi$ or $\Delta$ levels, do not come in nearly degenerate pairs with one member of each parity. Thus, since only levels of the same parity can interact (repel each other), only for $\Sigma$ states can an imbalance exist in the repulsion of $|\Lambda|>0$ opposite parity levels.

We now construct the diagram for second order effects of ${ }^{2} \Sigma^{+}$states on ${ }^{2} \Pi$ states.
Let $x \equiv J+\frac{1}{2}$


We are only concerned with ${ }^{2} \Sigma$ states in the middle. The two upper paths gave us the centrifugal distortion corrections. The thorough student will notice that there are some second-order terms of the form $A^{2}$ and $A B$ that we have not considered (and will not).

Thus

$$
\begin{equation*}
E_{1 / 2,1 / 2}^{(2)}=\sum_{v^{\prime}} \frac{\frac{1}{4}\left(A \mathbf{L}_{+}\right)^{2}+\left(B \mathbf{L}_{+}\right)^{2}\left[1 \pm 2(-1)^{J+S} x+x^{2}\right]+\left(A \mathbf{L}_{+}\right)\left(B \mathbf{L}_{+}\right)\left[1 \pm(-1)^{J+S} x\right]}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)} \tag{13}
\end{equation*}
$$

Since we are only interested in terms contributing to $\Lambda$-doubling, let us throw away all non-paritydependent terms.

$$
\begin{equation*}
E_{1 / 2,1 / 2}^{(2) \pm}=\sum_{v^{\prime}} \frac{ \pm(-1)^{J+S} x\left[2\left(B \mathbf{L}_{+}\right)^{2}+\left(A \mathbf{L}_{+}\right)\left(B \mathbf{L}_{+}\right)\right]}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)} \tag{14}
\end{equation*}
$$

The purist will notice that $E_{\Sigma}\left(v^{\prime}\right)$ has a parity dependence also but we will neglect this.


$$
\begin{equation*}
E_{3 / 2,3 / 2}^{(2)}=\sum_{v^{\prime}} \frac{\left(B \mathbf{L}_{+}\right)^{2}\left(x^{2}-1\right)}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\text { thus } \quad E_{3 / 2,3 / 2}^{(2) \pm}=0 \tag{16a}
\end{equation*}
$$



$$
\begin{align*}
& E_{3 / 2,1 / 2}^{(2)}=\sum_{v^{\prime}} \frac{-\left[x^{2}-1\right]^{1 / 2}\left[\frac{1}{2}\left(A \mathbf{L}_{+}\right)\left(B \mathbf{L}_{+}\right)+\left(B \mathbf{L}_{+}\right)^{2}\right] \mp\left(B \mathbf{L}_{+}\right)^{2}(-1)^{J+S} x\left[x^{2}-1\right]^{1 / 2}}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)}  \tag{18}\\
& E_{3 / 2,1 / 2}^{(2) \pm}=\sum_{v^{\prime}} \frac{\mp(-1)^{J+S}\left(B \mathbf{L}_{+}\right)^{2} x\left[x^{2}-1\right]^{1 / 2}}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)} \tag{19}
\end{align*}
$$

Equations (14), (16a) and (19) contain all you need to reproduce the finest details of ${ }^{2} \Pi$ lambda doubling in terms of two unknown parameters.

$$
\begin{align*}
\beta(\Pi \Sigma) & \equiv \sum_{v^{\prime}} \frac{\left(B \mathbf{L}_{+}\right)^{2}}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)}  \tag{20a}\\
\alpha \beta(\Pi \Sigma) & \equiv \sum_{v^{\prime}} \frac{\left(A \mathbf{L}_{+}\right)\left(B \mathbf{L}_{+}\right)}{E_{\Pi}-E_{\Sigma}\left(v^{\prime}\right)} \tag{20b}
\end{align*}
$$

$$
\begin{align*}
& E_{1 / 2,1 / 2}^{(2) \pm}= \pm(-1)^{J+S} x[2 \beta(\Pi \Sigma)+\alpha(\Pi \Sigma)]  \tag{21a}\\
& E_{3 / 2,3 / 2}^{(2)}=0  \tag{21b}\\
& E_{3 / 2,1 / 2}^{(2)}=E_{1 / 2,3 / 2}^{(2) \pm}=\mp(-1)^{J+S} x\left[x^{2}-1\right]^{1 / 2} \beta(\Pi \Sigma) \tag{21c}
\end{align*}
$$

It's really easy!

