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A.	 A Model for the Perturbations and Fine Structure of 
the Π States of CO 

This paper reports the results of an analysis of the numerous perturbations of the CO a3Π and 

A1Π states, which belong to the (σ1s)2 (σ∗1s)2 (σ2s)2 (σ∗2s)2 (π2p)4 (σ2p) (π∗2p) electronic con

figuration (abbreviated σπ∗), by the a�3Σ+, e3Σ−, d3Δi, I1Σ− and D1Δ states, which belong to the 

(σ1s)2 (σ∗1s)2 (σ2s)2 (σ∗2s)2 (π2p)3 (σ2p)2 (π∗2p) configuration (abbreviated π3π∗). As many data 

as possible from the absorption, emission, and radio frequency spectra involving these states were 

combined in a uniform and systematic analysis. In several cases it was possible to use earlier data 

from the work of Gerö and Szabo[3] to augment the modern studies. 

The vibronic levels fitted are listed in Table I. The letters adjacent to each level indicate the 

sources of the data. The 47 horizontal rows contain the combinations of vibronic levels treated by 

degenerate perturbation theory. The choice of which levels to include in each of the groups was 

usually determined by selecting all of the nearest and strongest perturbers of a given a3Π or A1Π 

level. (The vibronic levels of the A and a states conveniently never occur at the same energy.) 

Therefore, the fitted a3Π and A1Π constants reported here should be regarded as fully deperturbed 

with respect to all of the nearest interacting levels. 

Extensive use was made of a nonlinear least squares fitting procedure which has been described 

earlier. The elements of the effective Hamiltonian matrix are given by Wicke et al.[2] 

1 
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The analysis of perturbations of the CO a3Π and A1Π states has led to two important conclusions. 

(i) For perturbations between vibronic levels belonging to a given pair of electronic states the 

perturbation matrix element is the product of a vibrational factor with a constant electronic factor. 

(ii) Simple, single-configuration arguments successfully predict the sign and relative magnitude of 

each of the electronic factors for perturbations between levels of each pair of electronic states. Thus 

all of the perturbations considered here can be related to two constants which are joint properties 

of the electronic configurations. It is now possible to calculate the interaction energy between any 

rovibronic level of one electronic configuration with those of the other configuration whenever the 

vibrational wave-functions are known. 

B. Factorization of Perturbation Parameters 

All perturbation parameters are listed in Table II. The electronic part of each perturbation param

eter was obtained by dividing the spin-orbit parameter, A or α, by the vibrational overlap �v|v��, 
or by dividing the rotation-electronic parameter, β, by 

8π
h 
2cµ �v|r

−2|v�� ≡ �v|B|v�� = Bvv� . For 

extremely weak perturbations, the beta parameters, denoted with an asterisk, were calculated by 

multiplying an average value of the assumed constant electronic factor by the proper vibrational 

factor. Also included in Table II are the r–centroids, �v|r|v��/ �v|v�� which indicate the internu

clear distance of maximum vibrational overlap (stationary phase point). For perturbations between 

any pair of electronic states, the r–centroid is nearly constant. For a given perturbing state the 

r–centroids are approximately 0.3 Å greater for perturbations of a3Π than of A1Π. This indicates 

that the overlap is greater at a larger internuclear distance for perturbations of the a3Π state than 

for the A1Π state. This result can be rationalized by examining the potential energy curves for CO. 

The inner wall of the A1Π state runs close to and parallel to the inner walls of the perturbing a�, 

e, d, D, and I states, whereas the curves of the perturbing states cross the a3Π state on the outer 

wall. 

For the pairs of states for which multiple determinations of the electronic part of the perturbation 

parameters were possible, the independence of this constant electronic factor with respect to v, 

v� is demonstrated in Table II. Thus, it is possible to partially evaluate second order effects by 

summations over all known vibrational levels of a particular electronic symmetry. Second-order 

constants for the a3Π state are calculated and discussed by Wicke et al.[2] 
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C. The Electronic Perturbation Parameters 

The relative signs and magnitudes of the electronic perturbation parameters have been derived 

considering only two electronic configurations: 

σπ∗ (σ1s)2(σ∗1s)2(σ2s)2(σ∗2s)2 (π2p)4(σ2p)(π∗2p) a3Π, A1Π

π3π∗ (σ1s)(σ∗1s)2(σ2s)2(σ∗2s)2
 (π2p)3(σ2p)2(π∗2p) a�3Σ+, e3Σ−, d3Δi, D1Δ, I1Σ−, 1Σ+ . 

The treatment which follows considers the six 2p electrons to the right of the line and neglects 

those to the left as core. The general procedures used to obtain wavefunctions in a Hund’s case a 

basis set and to calculate matrix elements are analogous to those given by Condon and Shortley,[4] 

Chapter 6. The Hamiltonian operators and symmetry operator, σv, used here are those given by 

Hougen[5] and are consistent with the phase convention of Condon and Shortley.[4] 

The complete wavefunctions of definite overall parity contain electronic, rotational, and vi

brational parts. Consider first the electronic part. In order to maintain a consistent arbitrary 

phase throughout the calculation, a standard order for the complete set of individual spin-orbital 

quantum numbers must be defined. The standard order for the 2p orbitals chosen here was 

(1+1− − 1+ − 1−0+0−1∗−1∗− − 1∗+ − 1∗−) where the numerals denote the values of m�, ± de

notes ms = ±1
2 , and the asterisk denotes the (π∗2p) orbital. All possible six-electron functions were 

formed for each electronic configuration. There are eight such functions for the σπ∗ configuration 

and sixteen for the π3π∗ configuration. Each function could immediately be characterized by |ΛΣ�. 
Functions characterized by |ΛSΣ� were then generated. Those with Λ = ±1 or ±2 and Σ = 1 

could be identified as triplets by inspection. The corresponding |Λ10� and |Λ1 − 1� functions were �6obtained by successively applying the ladder operator S− = si− (see Condon and Shortley, i=1 

Chapter 8, §5 [4]). The functions with Λ = 0 were generated in the same way except, since there 

were initially two functions with Λ = 0, Σ = 1, the sum and difference functions were used. The 

singlet functions |Λ00� were formed by taking linear combinations of the original functions which 

were orthogonal to the triplet functions |Λ10�. 
The transformation properties of the Σ state functions and those with Ω = 0 under the symmetry 

operation σv (see Hougen §2.3 [5]) are denoted by + if they transform into themselves and by − if 

they transform into their negatives. It should be noted that the 3Π0 functions, |−111� and |11 − 1� 
generated by the above procedure did not transform properly, therefore the sum and difference 

functions which do transform properly were used for the 3Π0± states. The resulting functions 

were then anti-symmetrized with the operator A (see Condon and Shortley page 164 [4]) and are 

shown in Table III. The rotating-molecule wave functions were formed by multiplying the electronic 

part by the appropriate rotational part |ΩJM�, and, for Ω =� 0, taking sums and differences of 



� 
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functions with equal |Ω| for a given electronic state. The parity of the rotating-molecule functions 

was determined with the operator σv, used here are those given by Hougen [5] and are consistent 

with the phase convention of Condon and Shortley. [4] 

The complete wavefunctions of definite overall parity contain electronic, rotational, and vibra

tional parts. Consider first the electronic part. In order to maintain a consistent arbitrary phase 

throughout the calculation, a standard order for the complete set of individual spin-orbital quantum 

numbers must be defined. The standard order for the 2p orbitals chosen here was 

(1+1− − 1+ − 1−0+0−1∗+1∗− − 1∗+ − 1∗−), (1) 

where the numerals denote the values of m�, ± denotes ms = ±1/2, and the asterisk denotes the 

(π∗2p) orbital. All possible six-electron functions were formed for each electronic configuration. 

There are eight such functions for the σπ∗ configuration and sixteen for the π3π∗ configuration. 

Each function could immediately be characterized by |ΛΣ�. Functions characterized by |ΛSΣ� were 

then generated. Those with Λ = ±1 or ±2 and Σ = 1 could be identified as triplets by inspection. 

The corresponding Λ10� and Λ1 − 1� functions were obtained by successively applying the ladder �6 

| |
operator S− = si− [See Condon and Shortley (18, Ch. 8 Section 5) [4]]. The functions with i=1 

Λ = 0 were generated in the same way except, since there were initially two functions with Λ = 0, 

Σ = 1, the sum and difference functions were used. The singlet functions |Λ00� were formed by 

taking linear combinations of the original functions which were orthogonal to the triplet functions 

|Λ10�. 
The transformation properties of the Σ state functions and those with Ω = 0 under the symmetry 

operation σv [see Hougen (Section 2.3) [4]] are denoted by + if they transform into themselves and 

by − if they transform into their negatives. It should be noted that the 3Π0 functions, |−111� 
and |11 − 1� generated by the above procedure did not transform properly, therefore the sum and 

difference functions which do transform properly were used for the 3Π0± states. The resulting 

functions were then antisymmetrized with the operator A [see Condon and Shortley (p. 164) [4]] 

and are shown in Table III. The rotating molecule wavefunctions were formed by multiplying the 

electronic part by the appropriate rotational part |ΩJM�, and for Ω = 0, taking sums and differences �
of functions with equal |Ω| for a given electronic state. The parity of the rotating-molecule functions 

was determined with the operator σv. 

For the six-electron system the spin-orbit operator can be written 

6

HSO = ai�i · si (2) 
i=1 



� � � � 
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where 

1 1 
� s = �zsz + �+s � (3)· 

2 − +
2 −

s+ 

a ≡ �±1|a�±|0� = �0|a��| ± 1� . (4) 

The matrix elements of HSO were evaluated according to the procedure given by Condon and 

Shortley, Chapter 6 §6.[4] 

The six-electron operator corresponding to BL±S�: 

� �� � � � 
6 6 6 6

BL±S� = B �i± sj� = B �i±si� + (�i±sj� + �j±si�) (5) 
i=1 j=1 i=1 i>j=1 

b ≡ �±1|�±|0� = �0|��| ± 1� . (6) 

The matrix elements of the 2nd sum of the BL±S� operator were evaluated by the procedure 

given by Condon and Shortley Chapter 6 §7. [4] �6The six-electron operator for −BJ±L� is simply −BJ± i=1 �i�. The matrix elements of J± 

were taken from Hougen page 9. [5] 

The perturbation matrix elements written in terms of the parameters a and b are summarized 

in Table IV. The relationships of the perturbation parameters defined by Wicke et al. [1] to the 

parameters a and b are given in Table V. Also included in the last column of Table V are the 

experimental values for a and b determined from perturbations between various pairs of electronic 

states. The close agreement among the experimentally determined values of a and b is striking. 



5.76 Lecture # 18 Supplement Page 6


Table I: A1Π Perturbation Parameters 

A1Π (v) 
0 

Perturber (v�) 
a�(9) 

A (cm−1) 
1.41* 

A/ �v|v�� (cm−1) r–centroid (Å) 
1.1231 

1 a�(10) 2.890(29) -21.54(22) 1.1297 
2 a�(11) 3.93* 1.1363 
3 a�(13) -4.058(37) -20.89(19) 1.1295 
4 a�(14) -4.21* 1.1362 
5 a�(16) 4.15* 1.1300 
6 a�(17) 3.996(10) -20.87(5) 1.1367 
7 a�(19) -3.64* 1.1310 
8 a�(20) -3.082(18) -20.62(12) 1.1381 

10 a�(23) 2.058(35) -20.04(34) 1.1401 
12 a�(26) -1.25* 1.1422 

0 e(1) 8.708(6) -24.73(2) 1.2890 
1 e(3) 2.07* 1.2602 
2 e(4) 7.416(32) -24.92(11) 1.2815 
3 e(5) 5.51* 1.2947 
4 e(7) -4.41* 1.2855 
5 e(8) -0.469(31) -17.1(11) 1.3504 
6 e(10) 0.65* 1.3392 
7 e(11) -2.36(24) -26.2(27) 1.2650 
8 e(12) -4.03* 1.2830 
9 e(14) 3.48* 1.2723 

10 e(15) 4.328(25) -25.28(15) 1.2841 
11 e(17) -3.79* 1.2747 
12 e(18) -3.78* 1.2854 
13 e(19) -3.13* 1.2971 
14 e(21) 3.07* 1.2882 
15 e(22) 2.148(32) -23.68(35) 1.3017 
16 e(24) -2.22* 1.2933 
17 e(25) -1.24(5) -23.5(9) 1.3128 
18 e(27) 1.25* 1.3049 
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Table I: (continued)


A1Π (v) Perturber (v�) A (cm−1) A/ �v|v�� (cm−1) A)r–centroid (˚

0 d(4) -12.439(29) -33.70(8) 1.2200 
1 d(5) -9.769(39) -33.90(14) 1.2298 
2 d(7) 6.2* 1.2226 
3 d(8) 0.532(64) -28.3(34) 1.2994 
4 d(9) -4.04* 1.2193 
6 d(12) 6.338(11) -34.20(6) 1.2227 
8 d(15) -6.074(39) -33.51(22) 1.2221 
9 d(16) 5.15* 1.2308 
11 d(19) 3.551(18) -32.31(16) 1.2290

13 d(22) -2.234(65) -37.0(11) 1.2309

16 d(26) -1.15* 1.1957

18 d(29) 1.200(41) a − a −


β(cm−1) β/ �v|B|v��
(unitless) 

0 I(1) -.0539(9) .114(2) 1.2929 
1 I(2) .056* 1.2966 
2 I(3) .0231(55) .061(15) 1.3105 
4 I(6) .0121(10) .156(13) 1.2707 
6 I(9) -.031* 1.2952 
7 I(10) -.036* 1.3083 
8 I(12) .034* 1.2987 
9 I(13) .0212(65) .091(28) 1.3117 
10 I(15) -.027* 1.3028 
11 I(16) -.0128(36) .091(26) 1.3196 
13 I(19) .006* 1.3514 
14 I(21) -.0068* 1.3376 
15 I(22) -.0032* 1.2151 
16 I(24) -.0025* 1.1898 

1 D(1) .0746(25) a − a − 

Uncertainties in ( ) correspond to one standard deviation. 

* Fixed at calculated values. 

a. Vibrational wavefunctions not available. 
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Table II: a3Π Perturbation Parameters 

a3Π(v) 

4 
5 
6 
7 
8 
10 
13 
15 

Perturber(v�) 

a�(0) 
a�(1) 
a�(3) 
a�(4) 
a�(5) 
a�(8) 
a�(12) 
a�(15) 

α 
(cm−1) 

-7.476(9) 
-8.016* 
4.226* 
5.601(16) 
4.64* 

-4.066* 
2.183* 

-1.959* 

β 
(cm−1) 

.0819(4) 

.0874* 
-.0473* 
-.0609(6) 
-.0506* 
.0447* 

-.0239* 
.0216* 

α/ �v|v��
(cm−1) 

-17.77(2) 

-17.53(5) 

β/ �v|β|v��
(unitless) 
0.1544(8) 

0.1512(15) 

r–centroid 
(Å) 

1.3955 
1.4058 
1.3833 
1.3964 
1.4095 
1.4026 
1.4160 
1.4129 

11 
14 

e(2) 
e(6) 

-3.956(34) 
-4.52* 

.0353(12) 

.0405* 
-17.55(15) 0.1587(54) 1.5759 

1.5895 

9 
12 
15 

d(2) 
d(6) 
d(15) 

-9.258(21) 
1.856(57) 
0.83* 

.0889(32) 
-.019* 
-.008* 

-24.84(6) 
-22.8(7) 

0.222(8) 
—– 

1.5122 
1.4785 
1.4202 

10 
11 
13 
14 

I(0) 
I(1) 
I(4) 
I(5) 

A(cm−1) 
-0.886* 
-2.168* 
-9.88(32) 
-9.42(9) 

A/ �v|v�� (cm−1) 

-24.7(8) 
-23.61(23) 

1.5856 
1.5965 
1.5924 
1.6045 
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Table III: Normalized, antisymmetrized wavefunctions for the σπ∗ and π3π∗ configurations 

| |

State Ω wavefunctions for . . . (π2p)4(σ2p)(π∗2p) 
3Π2 

3Π1 

3Π0 

1Π 

+2 
−2 

+1 
−1 

0+ 

0− 

+1 
−1 

A |1+1− − 1+ − 1−0+1∗+�
A |1+1− − 1+ − 1−0− − 1∗−� 

A 1√
2 
[|1+1− − 1+ − 1−0−1∗+� + |1+1− − 1+ − 1−0+1∗−�] 

A 1√
2 
[|1+1− − 1+ − 1−0− − 1∗+� + |1+1− − 1+ − 1−0+ − 1∗−�] 

A 1√
2 
[|1+1− − 1+ − 1−0−1∗−� − |1+1− − 1+ − 1−0+ − 1∗+�] 

A 1√
2 
[|1+1− − 1+ − 1−0−1∗−� + |1+1− − 1+ − 1−0+ − 1∗+�] 

A 1√
2 
[|1+1− − 1+ − 1−0−1∗+� − |1+1− − 1+ − 1−0+1∗−�] 

A 1√
2 
[|1+1− − 1+ − 1−0− − 1∗+� − |1+1− − 1+ − 1−0+ − 1∗−�] 

wavefunctions for . . . (π2p)3(σ2p)2(π∗2p) 
3Δ3 

3Δ2 

3Δ1 

1Δ 

3Σ+ 

3Σ− 

1Σ+ 

1Σ− 

+3 
−3 

+2 
−2 

+1 
−1 

+2 
−2 

+1 
0− 

−1 

+1 
0+ 

−1 

0+ 

0− 

A |1+1− − 1+0+0−1∗+�
A |1− − 1+ − 1−0+0−1∗−� 

A 1√
2 
[|1+1− − 1−0+0−1∗+� + |1+1− − 1+0+0−1∗−�] 

A 1√
2 
[|1− − 1+ − 1−0+0− − 1∗+� + |1+ − 1+ − 1−0+0− − 1∗−�] 

A |1+1− − 1−0+0−1∗−�
A |1+ − 1+ − 1−0+0− − 1∗+� 

A 1√
2 
[|1+1− − 1−0+0−1∗+� − |1+1− − 1+0+0−1∗−�] 

A 1√
2 
[|1− − 1+ − 1−0+0− − 1∗+� − |1+ − 1+ − 1−0+0− − 1∗−�] 

A 1√
2 
[|1+1− − 1+0+0− − 1∗+� + |1+ − 1+ − 1−0+0−1∗+�] 

A1 
2 [|1

+1− − 1−0+0− − 1∗+� + |1+1− − 1+0+0− − 1∗−� 
+ |1− − 1+ − 1−0+0−1∗+� + |1+ − 1+ − 1−0+0−1∗−�] 

A 1√
2 
[|1+1− − 1−0+0− − 1∗−� + |1− − 1+ − 1−0+0−1∗−�] 

A 1√
2 
[|1+1− − 1+0+0− − 1∗+� − |1+ − 1+ − 1−0+0−1∗+�] 

A1 
2 [|1

+1− − 1−0+0− − 1∗+� + |1+1− − 1+0+0− − 1∗−� 
− |1− − 1+ − 1−0+0−1∗+� − |1+ − 1+ − 1−0+0−1∗−�] 

A 1√
2 
[|1+1− − 1−0+0− − 1∗−� − |1− − 1+ − 1−0+0−1∗−�] 

A1 
2 [|1

+1− − 1−0+0− − 1∗+� − |1+1− − 1+0+0−1∗−� 
+ |1− − 1+ − 1−0+0−1∗+� − |1+ − 1+ − 1−0+0−1∗�] 

A1 
2 [|1

+1− − 1−0+0− − 1∗+� − |1+1− − 1+0+0− − 1∗−� 
− 1− − 1+ − 1−0+0−1∗+� + 1+ − 1+ − 1−0+0−1∗−�] 



� � � � 

�
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Table IV: Electronic Perturbation Matrix Elements. � ����6 ��� 3Σ+ 
� 

1
� 3Π1±, v ����i
6
=1 ai�i · si + B(L+S− + L−S+)��� 3Σ1 

−
±, v�� = 

4 a 
1

�v|v�� − Bvv� b
� 3Π1±, v ���i
6
=1 ai�i · si + B(L+S− + L−S+)�� 1 ±, v�� = −

4 a �v|v�� + Bvv� b
� 1
� 3Π1±, v ��6 
i=1 ai�i · s�i + B(L+S�− + L−S+) � 3Δ1±, v� = 

4 

√
2a �v|v�� − 

√
2Bvv� b � 3Π0−, v �� i=1 ai�i · si 

�� 1Σ−−, v�� = −1
4 

√
2a �v v��
� 1
3Π2±, v 

�6 
i=1 ai�i · si 

� 1Δ±, v� = 
4 

√
2a �v v��

|

��6 � 3Σ+ 1 
|

1Π±, v ai�i · si 1 , , v
� =
� 

1Π±, v 
��i

6
=1 � 

1 ±, v� 
� 4 a 

1

�v|v��
� ���i
6
=1 ai�i · si 

�� 3Σ− � = −
4 a �v|v��� 11Π±, v 
√

2a �v|v��

� − + J 1Σ−−, v�� = −Bvv� bx


ai�i · si 
� 3Δ1±, v� = −i=1 4 

1 
2

1Π−, v |−B(J+L
1Π±, v |−B(J+L

−L+

− + J
|

|
 1 

2
1Δ±, v�� = Bvv� b(x − 2)−L+

x = J(J + 1) 

Table V: Electronic Perturbation Paramaters

Perturbations 

3Π, 3Σ+ 

Correspondencesa � 
a = −4

√
2 α+ 

0 �v|v�� 

b = 
√

2 B+ 
0 

� 
Bvv� 

Experimental Value 
a = 100.3 

b = 0.217 

3Π, 3Σ− a = −4
√

2 α−0 

� 
�v|v�� 

b = 
√

2 β−0 

� 
Bvv� 

a = 99.3 

b = 0.224 

3Π, 3Δ a = −4 α2/ �v|v�� a = 99.3 

b = β2/ Bvv� b = 0.222 

3Π, 1Σ− 

3Π, 1Δ 

1Π, 3Σ+ 

1Π, 3Σ− 

1Π, 3Δ 

1Π, 1Σ 

a = −4 A−
01 

� 
�v|v�� 

a = 2
√

2 A21/ �v|v�� 

a = −4 A+ 
10 

� 
�v|v�� 

a = −4 A−
10 

� 
�v|v�� 

a = −2
√

2 A12/ �v|v�� 

b = 2 β−10 

� 
Bvv� 

a = 94.8 

no perturbation analyzed 

a = 83.4 

a = 99.0 

a = 95.8 

b = 0.228 

1Π, 1Δ b = −β12/ Bvv� vibrational wavefunctions not available for 1Δ 

aFor definitons of the parameters α, β, etc. see Freed,[6] Wicke et al.[2] and Field [1]. 
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