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A. Energy Level Structure of 2Π and 2Σ States: Case (a) and Case 
(b) Limits 

The 2Π Hamiltonian matrix was shown to be 

2Π± 1/2A + B(x2 − 2) B(x2 − 1)1/2 
3/2 

2Π± B(x2 − 1)1/2 −1/2A + Bx2 
1/2 

x ≡ J + 2
1 

Case (a) limit |A − 2B| � Bx 

Use second-order perturbation theory to express the effect of the off-diagonal matrix element on 
the energy. The second order correction is valid when |A − 2B| � Bx. (ΔE � V). 

E3/2 = 
1 

A + B(x2 − 2) + 
B2

(x2 − 1)
2 A 

E1/2 = −
2
1 

A + Bx2 − 
B
A 

2

(x2 − 1) 

Notice that if we define three new effective parameters the energy level expressions take on particularly 

1
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simple forms. 

Aeff = A − 2B 

B2 

B3/2 eff = B + 
A 
B2 

B1/2 eff = B − 
A 

Thus 

E3/2 = 
1 

Aeff + B3/2 eff (x2 − 1)
2 

E1/2 = − 
1 

Aeff + B1/2 eff (x2 − 1)
2 

Thus we have two stacks of energy levels for which the extrapolated x = 1 levels are symmetrically split 
on either side of EΠ and whose effective rotational constants (just like for 1Σ molecule) can be averaged to 
give the true BΠ rotational constant. 

A second limiting case is obtained when A = 0. This is the case (b) limit. If A = 0, we must 
diagonalize the 2Π Hamiltonian matrix. We solved the problem for two levels separated by 2d, with an 
off-diagonal matrix element V connecting them, and for an average energy Eo. In the present problem 

Eo = EΠ − B + Bx2 

d = −B 

V = B(x2 − 1)1/2 � �V �2�1/2 

E± = Eo ± d 1 + 
d ⎡ � �2⎤1/2 

E± = EΠ + B(x2 − 1) � ⎣⎢⎢⎢⎢⎢1 − 
B(x2 − 1)1/2 ⎦⎥⎥⎥⎥⎥
−B 

= EΠ + B(x2 − 1) � Bx 

Observe the difference in energy between an E+ level for x → x + 1 and E− level for x → x. (Note the ± 

does not refer to parity in this problem.) 

E+(x + 1) − E−(x) = B(x2 + 2x + 1 − x − 1 − 1 − x2 − x + 1) = 0 

Thus pairs of levels corresponding to “Ω = 3/2”, J + 1 and “Ω = 1/2”, J are exactly degenerate. If A is 
not quite zero, then these pairs will be slightly split and the splitting is called the spin-splitting. At high 
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enough J, a 2Π molecule will always develop this case (b) energy level pattern. The spacing between these 
degenerate pairs of levels is 

E+(J + 1) − E+(J) = B(x2 + 2x + 1 − 1 − x − 1 − x2 + 1 + x) = 2Bx 

Note that the spacing between successive rotational levels of a 1Σ+ state is 2BJ. Thus we see another 
striking similarity between 2Π in the case (b) limit and the familiar 1Σ molecule. We have not considered 
Λ doubling yet; in actuality 2Π levels in the case (b) limit fall in near degenerate groups of four, two of 
each parity. 

Consider the 2Σ+ state. No diagonalization is necessary so we do not have to talk about limiting 
cases. 

E(2Σ+±) = B[x2 ± (−1)J+S x] 

E(2Σ++(x + 1)) − E(2Σ++(x)) = B[x2 + 2x + 1 + (−1)J+1+S (x + 1)] − B[x2 + (−1)J+S x] 

= B[2x + 1 − (−1)J+S (x + 1) − (−1)J+S x] 

= B(2x + 1)[1 − (−1)J+S ] 

Thus 2Σ++(J + 1) and 2Σ++(J) are either degenerate or they are separated by 

(4x + 2)B 

Note that for 1Σ levels 
E(1Σ(J + 1)) − E(1Σ(J − 1)) = (4J + 2)B. 

The 2Σ+ levels therefore occur in degenerate pairs, both members of each pair of the same total parity, 
the parity of successive pairs alternating, and the spacing between adjacent pairs is 2Bx. Again we see an 
exact analog with 1Σ energy level structure where a new quantum number N 

1
N = J ± 

2 

is suggested for which the rotational energy levels of both 2Σ and 2Π states look like the rotational energy 
levels of a 1Σ state, but with J replaced by N. 
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B.	 Matrix Elements for 2Π and 2Σ States Including Π ∼ Σ Perturba
tion 

The Hamiltonian is 

H = Hev + B(r)R2 + AL S	 (1)· 

Hev is the electronic and vibrational (vibronic) Hamiltonian. It only has diagonal matrix elements. We 
will neglect the spin-rotation term because it is small and the spin-spin term because it is rigorously zero 
(there is only one spin!). 

The Hamiltonian was put into a convenient form in the previous handout. 

�� � � �	 � 
H = Hev + B(r) J2 − Jz 

2 + S2 − Sz 
2 + L2 

⊥ − (J+L− + J−L+) − (J+S− + J−S+) 
1 

+ALzSz + B(r) + 
2 

A (L+S− + L−S+)	 (2) 

If we choose the |v� |nΛS Σ� |ΩJM� basis we know all the matrix elements necessary to construct the 2Π, 
2Σ Hamiltonian matrix. Some simplifications: 

1. The diagonal matrix elements of Hev + B(r)L2 are by definition Te + G(v), where Te is the electonic ⊥ 

energy and G(v) is the vibrational energy. 

2. �v|B(r)|v� ≡ B(v). � � � � � �2	 � 
3. Diagonal matrix elements of S2 − S2 = 1

2 2
1 + 1 − ± 1

2 = 1
2 for all doublet states i.e., S = 2

1 , Σ = ±z �	 �2 
4. J(J + 1) = J + 2

1 − 4
1 . 

�v| �nΛ�S �Σ�| �Ω� 
� J� M�| H |ΩJM� |n� ΛS Σ� |v� = � � 

1
Te + G(v) + B(v) J(J + 1) − Ω2 + + AΛΣ δJ� JδΩ�ΩδM� MδΛ�ΛδS �S δΣ�Σ2

− {matrix elements of B(r)(J+S− + J−S+)} δJ� JδM� MδΛ�ΛδS �S δΩ�Ω±1δΣ�Σ±1


− {matrix elements of B(r)(J+L− + J−L+)} δJ� JδM� MδS �S δΣ�ΣδΛ�Λ±1δΩ�Ω±1 

1 
+ matrix elements of B(r) + 

2 
A (L+S− + L−S+) 

δJ� JδM� MδΩ�ΩδΛ�Λ±1δΣ�Σ�1 (δS �S + δS �S �1) (3) 

1 
2 . 
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The first { } contains the diagonal part of H, the second { } contains the part off-diagonal by one in Ω 

and Σ, the third { } contains the part off-diagonal by one in Ω and Λ, and the fourth { } contains the part 
off-diagonal by one in Σ, Λ, and S . Only the 

1 
A(L+S− + L−S+)2 

part of the fourth { } can have matrix elements off-diagonal in S . The first term of (3) allows us to 
immediately write the diagonal matrix elements. The states we are considering are: ���2 � 

= JM, Ω = 3/2� Λ = 1, Σ = 1/2, S ���2Π3/2 � 
| | = 1/2� 

Π1/2 � 
= |JM, Ω = 1/2� |Λ = 1, Σ = −1/2, S = 1/2����2Π−1/2 � 
= |JM, Ω = −1/2� |Λ = −1, Σ = 1/2, S = 1/2����2���Π2 −3/2 � 
= |JM, Ω = −3/2� |Λ = −1, Σ = −1/2, S = 1/2� 

Σ1/2 = JM, Ω = 1/2� Λ = 0, Σ = 1/2, S = 1/2����2Σ−1/2 

� 
= 

|

|JM, Ω = −1/2

|

� |Λ = 0, Σ = −1/2, S = 1/2� ⎡� �2 ⎤ (4) � � � � 1 ⎢⎢⎢⎢ 1 ⎥⎥⎥⎥2 2 2 2Π3/2|H| Π3/2 = Π−3/2|H| Π−3/2 = TΠ + GΠ(v) + 
2 

AΠ + BΠ(v) ⎣ J + 
2 
− 2⎦ 

� � � � 1 
� 

1 
�2 

2 2 2 2Π1/2|H| Π1/2 = Π−1/2|H| Π−1/2 = TΠ + GΠ(v) − 
2 

AΠ + BΠ(v) J + 
2 

(5) 

� � � � � 
1 
�2 

2 2 2 2Σ1/2|H| Σ1/2 = Σ−1/2|H| Σ−1/2 = TΣ + GΣ(v) + BΣ(v) J + 
2 
. (6) 

The second term of (3) allows us to construct off-diagonal matrix elements among the 2Π functions and 
among the 2Σ functions, but not between 2Π and 2Σ functions. 

− �v(Ω ± 1)JM, nΛS (Σ ± 1) |B(r)(J+S− + J−S+| v, ΩJM, nΛS Σ� = 

−B(v)[(S � Σ)(S ± Σ + 1)(J ± Ω + 1)(J � Ω)]1/2 (7) 

Note that B(r) B(v) since we took matrix elements diagonal in v and within an electronic state. The→ 

matrix elements are � � � � ⎢⎢⎢⎢⎡� 1 
�2 ⎥⎥⎥⎥⎤1/2 

2 2 2 2Π3/2|H| Π1/2 = Π−3/2|H| Π−1/2 = −BΠ(v) ⎣ J + 
2 
− 1⎦ (8) 

2 2 2 2� 
Π3/2|H| Π−1/2 � 

= Π−3/2|H| Π1/2 = 0 (9) 

� 
2Π3/2|H|2Π−3/2 � 

= 0 (10) 
2 2Π1/2|H| Π−1/2 = 0 (11) 



� � 

� � 

� � ������ 
������ 

� � � � 

5.80 Lecture #17 Supplement Page 6 

All of the 2Π matrix elements between values of Ω with opposite signs would require Λ = 1 → −1 or a 
change in Λ by 2. No operator in our Hamiltonian can do that. � � 12 2Σ1/2|H| Σ−1/2 = −BΣ(v) J + 

2 
(12) 

The third and fourth terms of equation (3) allow us to write the matrix elements between 2Π and 2Σ states. 

− �v�, n�(Λ ± 1)S Σ, (Ω ± 1)JM|B(r)(J+L− + J−L+)|v, nΛS Σ, ΩJM� = 

− �v�, n�(Λ ± 1)S Σ|B(r)L±|v, nΛS Σ� �(Ω ± 1)JM|J�|ΩJM� (13) 

The first factor of (13) cannot be simplified further and is treated as an unknown constant. This is a matrix 
element between two electronic states, each with its own set of vibrational eigenfunctions. 

The 2Π, 2Σ matrix elements from this term are � � � � ⎡⎢⎢⎢⎢� 1 
�2 ⎤⎥⎥⎥⎥1/2 

2 2 2 2Π3/2|H| Σ1/2 = Π−3/2|H| Σ−1/2 = − �v�, Π|BΠΣL+|v, Σ� ⎣ J + 
2 
− 1⎦ (14) 

� � � � 12 2 2 2Π1/2|H| Σ−1/2 = Π−1/2|H| Σ1/2 = − �v�, Π|BΠΣL+|v, Σ� J + 
2 

(15) 

If the vibrational wave functions are known for the v�, 2Π and v, 2Σ states, then BΠΣ can be calculated 

�2 

BΠΣ = v�, Π 
2µr2 v, Σ . (16) 

Normally BΠΣ is left as an unknown constant. Finally, the fourth term of equation (3) gives us the last 
matrix element between the 2Π and 2Σ functions. 

1 
v�, n�(Λ ± 1)S (Σ � 1), ΩJM 

������ B(r) + A (L+S− + L−S+) 
������ v, nΛS Σ, ΩJM

2 
1 

= 

� 

v�, n�(Λ ± 1) 

������
� 
B(r) + 

2 
A 

� 
L± 

������ v, nΛ 

� 

�S (Σ � 1) |S�| S Σ� (17) 

The first factor of (17) cannot be simplified. The second factor is one of our known matrix elements of S±. 
Thus the final necessary matrix element of the Hamiltonian is � � � � 12 2 2 2Π1/2|H| Σ1/2 = Π−1/2|H| Σ−1/2 = �v�, Π|BΠΣL+|v, Σ� + 

2 
�v, Π|AΠΣL+|v, Σ� (18) 

The matrix elements for the 2Π, 2Σ Hamiltonian are in equations (4), (5), (6), (8), (9), (10), (11), (12), (14), 
(15), and (18). The matrix is a 6 × 6 matrix which contains only 10 zeroes. The matrix could be factored 
into two 3 × 3 blocks if suitable linear combinations of the functions with the same value of |Λ| and |Ω| 
are taken. Such linear combinations correspond to the choice of “parity” basis functions. Like J and M, 
the eigenvalue of the parity operator is a rigorously good quantum number (in the absence of electric and 
magnetic fields). 
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C. Parity 

1. What is the parity operator? 

2. What effect does it have on our basis functions? 

3. How do we construct parity eigenfunctions? 

4. What are the eigenvalues of the parity operator operating on parity eigenfunctions? 

Parity is a difficult concept and impossible to explain without recourse to a detailed examination of the 
form of the actual |ΩJM� and |nΛS Σ� functions. 

The parity operator can be regarded as a reflection in a plane containing the diatomic molecule 
(σv). The effect of this operation is 

σv |nΛS Σ� = (−1)S −Σ+Λ |n − ΛS − Σ� . (19) 

If Λ = 0, then it is possible to have two different types of Σ states: Σ+ and Σ−. This extra label, used only 
for Σ (i.e., Λ = 0) states, represents an intrinsic property of Σ states. 

σv |nΛ = 0S Σ� = ±(−1)S −Σ |nΛ = 0S − Σ� (20) 

The ± on the RHS of (20) is the same ± that appears as a right superscript for Σ states. Generalizing 
equation (19) by letting σ = 0 for Σ+ states and σ = 1 for Σ− states and σ = 0 for all Λ > 0 states we have 

σv |nΛS Σ� = (−1)S −Σ+Λ+σ |n − ΛS − Σ� (21) 

also 
σv |ΩJM� = (−1)J−Ω |−ΩJM� (22) 

and 
σv|v� = |v�. (23) 

Combining (21), (22), (23) and using Ω = Λ + Σ: 

σv |v, nΛS Σ, ΩJM� = (−1)J−2Σ+S +σ |v, n − ΛS − Σ, −ΩJM� . (24) 

We have now shown the effect of the parity operator on our basis functions. Parity eigenfunctions are 
constructed by forming linear combinations of |ΩJM� |nΛS Σ� functions such that σv operating on the 
linear combination gives back the same linear combination, multiplied either by +1 or −1. 
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The ±1 coefficient is the eigenvalue of the parity operator and is a good quantum number (there 
are no matrix elements off-diagonal in parity). The parity functions for our 2Π, 2Σ problem are 

2Π±3/2 = √
1

2 

����2Π3/2 

� 
� (−1)J+S 

���2Π−3/2 

�� 
(25a) 

2Π±1/2 = √
1

2 

����2Π1/2 

� 
� (−1)J+S 

���2Π−1/2 

�� 
(25b) 

2Σ+± = √
1

2 

����2Σ+ 
1/2 

� 
� (−1)J+S 

���2Σ+ 
−1/2 

�� 
(25c) 

2Σ−± = √
1

2 

����2Σ−1/2 

� 
± (−1)J+S 

���2Σ−−1/2 

�� 
. (25d) 

It is now possible to construct matrix elements using parity basis functions. I will list the matrix elements: 

� �	 1 ⎢⎢⎢⎢⎡� 1 
�2 ⎥⎥⎥⎥⎤ 2	 2Π±3/2|H| Π

±
3/2 = TΠ + GΠ(v) + 

2 
AΠ + BΠ(v) ⎣ J + 

2 
− 2⎦ (26) 

� � 1 
� 

1 
�2 

2	 2Π± |H| Π± = TΠ + GΠ(v) − 
2 

AΠ + BΠ(v) J + 
2	

(27)1/2 1/2
 ⎡� �2 ⎤1/2
� � ⎢⎢⎢⎢ 1 ⎥⎥⎥⎥2	 2Π±3/2|H| Π
±
1/2 = −BΠ(v) ⎣ J + 

2 
− 1⎦ (28) ⎡� �2 � �⎤� �	 ⎢⎢⎢⎢ 1 1 ⎥⎥⎥⎥2	 2Σ+±|H| Σ+± = TΣ+ + GΣ+ (v) + BΣ+ (v) ⎣ J + 

2 
± (−1)J+S J + 

2 ⎦	 (29) 

� � ⎢⎢⎢⎢⎡� 1 
�2 � 

1 
�⎥⎥⎥⎥⎤ 2 2Σ−±|H| Σ−± = TΣ− + GΣ− (v) + BΣ− (v) ⎣ J + 

2 
� (−1)J+S J + 

2 ⎦ (29a) 

� � ⎢⎢⎢⎢⎡� 1 
�2 ⎥⎥⎥⎥⎤1/2 

2Π±3/2|H|
2Σ+± = − �v�Π|BΠΣ+ L+|v, Σ� ⎣ J + 

2 
− 1⎦ (30) 

� � ⎢⎢⎢⎢⎡� 1 
�2 ⎥⎥⎥⎥⎤1/2 

2	 2Π±3/2|H| Σ
−± = − �v�, Π|BΠΣ− L+|v, Σ� ⎣ J + 

2 
− 1⎦	 (30a) 

� � 1 12Π±1/2|H|
2Σ+± = 

2 
�v�, Π|AΠΣ+ L+|v, Σ� + �v�, Π|BΠΣ+ L+|v, Σ� 1 ± (−1)J+S J + 

2 
(31) � � 1	 12	 2Π±1/2|H| Σ

−± = 
2 
�v�, Π|AΠΣ− L+|v, Σ� + �v�, Π|BΠΣ− L+|v, Σ� 1 � (−1)J+S J + 

2 
(31a) 

This is all you will need until we start to worry about second-order effects such as centrifugal 
distortion and lambda doubling. 


