MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#15: ${ }^{2} \Pi$ and ${ }^{2} \Sigma$ Matrices

Last Time: effect of $\widehat{A^{2}}, \widehat{A}_{i}, \widehat{A}_{ \pm}$on $\left|A \alpha M_{A}\right\rangle$ basis set case (a) basis set $\quad|\mathrm{n}(\mathrm{L}) \Lambda \mathrm{S} \Sigma\rangle|\mathrm{v}\rangle|\Omega \mathrm{JM}\rangle$
L-destroyed, but not $\Lambda: \hat{\mathrm{L}}_{z}, \hat{\mathrm{~L}}_{ \pm}$, selection rules $\widehat{\mathbf{H}}^{\text {ROT }}=\mathrm{B}(\mathrm{R}) \widehat{\mathrm{R}^{2}}$ matrix elements
Diagonal: $\left.\quad\left\langle n^{\prime} \Lambda^{\prime} S^{\prime} \Sigma^{\prime}\right|\left\langle\mathrm{v}^{\prime} \mid\left.\langle\Omega \mathrm{JM}| \widehat{\mathbf{H}}^{\mathrm{ROT}}\right|_{\mathrm{n}} \Lambda S \Sigma\right\rangle\right\rangle|\mathrm{v}\rangle|\Omega \mathrm{JM}\rangle=\delta_{\mathrm{n}^{\prime} \mathrm{n}} \delta_{\Lambda^{\prime} \Lambda} \delta_{\mathrm{S}^{\prime} S^{\prime}} \delta_{\Sigma^{\prime} \Sigma} \delta_{{v^{\prime} v}} \delta_{\Omega^{\prime} \Omega} \delta_{J^{\prime} J} \delta_{\mathrm{M}^{\prime} \mathrm{M}}$ $\times \mathrm{B}_{\mathrm{v}}\left[\mathrm{J}(\mathrm{J}+1)-\Omega^{2}+\mathrm{S}(\mathrm{S}+1)-\Sigma^{2}+\mathrm{L}_{\perp}^{2}\right]$
$\boldsymbol{\Delta} \boldsymbol{\Omega}=\boldsymbol{\Delta} \boldsymbol{\Sigma}= \pm \mathbf{1}$ within $\Lambda-\mathrm{S}$ multiplet state (S-uncoupling):

$$
\begin{aligned}
& \left\langle\mathrm{n} \Lambda \mathrm{~S} \sum \pm 1\right|\langle\mathrm{v}|\langle\Omega \pm 1 \mathrm{JM}| \widehat{\mathbf{H}}^{\mathrm{ROT}}|\mathrm{n} \Lambda \mathrm{~S} \Sigma\rangle|\mathrm{v}\rangle|\Omega \mathrm{JM}\rangle=-\mathrm{B}_{\mathrm{v}}[\mathrm{~J}(\mathrm{~J}+1)-(\Omega \pm 1) \Omega]^{1 / 2}[\mathrm{~S}(\mathrm{~S}+1)- \\
& \quad(\Sigma \pm 1) \Sigma]^{1 / 2}
\end{aligned}
$$

**** In some of my handouts I call $\mathrm{J}+1 / 2=\mathrm{x}$. Here, I'll call it $\mathrm{y} * * * * *$ Here $\mathrm{x}=\mathrm{J}(\mathrm{J}+1), \mathrm{y}=\mathrm{J}+1 / 2$

For example: Start by listing all relevant basis states.

$\begin{array}{ccccc} & \Lambda & \mathrm{S} & \Sigma & \\ \mid \mathrm{n} & 1 & 1 / 2 & 1 / 2\rangle & { }^{2} \Pi_{3 / 2} \\ \mathrm{n} & 1 & 1 / 2 & -1 / 2\rangle & { }^{2} \Pi_{1 / 2} \\ \mathrm{n} & -1 & 1 / 2 & -1 / 2\rangle & { }^{2} \Pi_{-3 / 2} \\ \mathrm{n} & -1 & 1 / 2 & 1 / 2\rangle & { }^{2} \Pi_{-1 / 2} \end{array}$

$$
\begin{array}{r}
\widehat{\mathbf{H}}^{\mathrm{ROT}}\left({ }^{2} \Pi\right)={ }^{2} \prod_{3 / 2} \\
\mathrm{~B}_{\mathrm{v}}^{\pi} \times{ }^{2} \prod^{2} \prod_{1 / 2} \\
{ }^{2} \prod_{-3 / 2}
\end{array}\left(\begin{array}{cc|ccc}
\mathrm{x}-\frac{9}{4}+\frac{3}{4}-\frac{1}{4} & -\left[\mathrm{x}-\frac{3}{4}\right]^{1 / 2}\left[\frac{3}{4}+\frac{1}{4}\right]^{1 / 2} \\
\mathrm{sym} & \mathrm{x}-\frac{1}{4}+\frac{3}{4}-\frac{1}{4} & 0 & \Delta \Omega= \pm 1 & 0 \\
\hline 0 & 0 & \mathrm{x}-\frac{1}{4}+\frac{3}{4}-\frac{1}{4}-\left[\mathrm{x}-\frac{3}{4}\right]^{1 / 2} & 1 \\
0 & 0 & \operatorname{sym} & \mathrm{x}-\frac{9}{4}+\frac{3}{4}-\frac{1}{4}
\end{array}\right)
$$

$\mathrm{B}_{\mathrm{v}}^{\pi}\left(\begin{array}{cc:cc}\mathrm{x}-\frac{7}{4} & \left(\mathrm{x}-\frac{3}{4}\right)^{1 / 2} & 0 & 0 \\ \operatorname{sym} & \mathrm{x}+\frac{1}{4} & 0 & 0 \\ \hline 0 & 0 & \mathrm{x}+\frac{1}{4} & \left(\mathrm{x}-\frac{3}{4}\right)^{1 / 2} \\ 0 & 0 & \operatorname{sym} & \mathrm{x}-\frac{7}{4}\end{array}\right)$
Two identical blocks for $\Omega>0$ and $\Omega<0$ - later we will consider parity basis.
What about ${ }^{2} \Sigma^{+}$? Class should do this.

$$
\begin{gathered}
\boldsymbol{\Delta} \boldsymbol{\Omega}=\boldsymbol{\Delta} \mathbf{\Lambda}= \pm \mathbf{1} \text { between } \Lambda \text {-S multiplet states (L-uncoupling) } \\
\left.\left\langle\mathrm{n}^{\prime} \Lambda+1 \mathrm{~S} \Sigma\right|\left\langle\mathrm{v}^{\prime}\right|\langle\Omega \pm 1 \mathrm{JM}| \widehat{\mathbf{H}}^{\mathrm{ROT}}|\mathrm{n} \Lambda \mathrm{~S} \Sigma\rangle|\mathrm{v}\rangle|\Omega \mathrm{JM}\rangle=-\mathrm{B}_{\mathrm{v}^{\prime} \mathrm{v}} \mathrm{~J}(\mathrm{~J}+1)-(\Omega \pm 1) \Omega\right]^{1 / 2} \times \frac{\left\langle\mathrm{n}^{\prime} \Lambda \pm 1\right| \mathrm{L}_{ \pm}|\mathrm{n} \Lambda\rangle}{\beta}
\end{gathered}
$$ a perturbation parameter to be determined by a fit to the spectrum. \uparrow

Today:

$$
\widehat{\mathbf{H}}^{\mathrm{so}}, \widehat{\mathbf{H}}^{\mathrm{sS}}, \widehat{\mathbf{H}}^{\mathrm{sR}}\left\{\begin{array}{l}
\text { effective operators } \\
\text { matrix elements }
\end{array}\right.
$$

Matrix elements of ${ }^{2} \Pi,{ }^{2} \Sigma$ effective \mathbf{H}.
spin-orbit

$$
\widehat{\mathbf{H}}^{\mathrm{sO}}=\sum_{\mathrm{i}} \mathrm{a}\left(\mathrm{r}_{\mathrm{i}}\right) \ell_{\mathrm{i}} \cdot \mathrm{~s}_{\mathrm{i}} \xrightarrow[\text { only }]{\text { for } \Delta \mathrm{S}=0} \mathrm{~A} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~S}}
$$

(restricted validity operator replacement)
spin-spin

$$
\widehat{\mathbf{H}}^{\mathrm{SS}}=\xrightarrow[\text { only }]{\text { for } \Delta \mathrm{S}=0} \frac{2}{3} \lambda\left[3 \hat{\mathrm{~S}}_{\mathrm{z}}^{2}-\hat{\mathrm{S}}^{2}\right]_{+ \text {another term } \Delta \Sigma=-\Delta \Lambda= \pm 2}
$$

spin-rotation $\quad \widehat{\mathbf{H}}^{\mathrm{SR}}=\gamma \widehat{\mathrm{R}} \cdot \hat{\mathbf{S}}$
usually λ, γ are very small with respect to A and are dominated by second-order spin-orbit effects (thru van Vleck transformation) - discussed later
$\widehat{\mathbf{H}}^{\text {so }}$ is very important

$\hat{\ell}_{\mathrm{i}}, \hat{\mathrm{s}}_{\mathrm{i}}$ are vectors with respect to $\hat{\mathrm{J}} \rightarrow \hat{\ell}_{\mathrm{i}} \cdot \hat{\mathrm{s}}_{\mathrm{i}}$ is scalar $(\Delta \mathrm{J}=\Delta \mathrm{M}=\Delta \Omega=0)$ with respect to $\hat{\mathrm{J}}$.
\hat{S}_{i} is vector with respect to $\hat{\mathrm{S}} \rightarrow \hat{\ell}_{\mathrm{i}} \cdot \hat{\mathrm{S}}_{\mathrm{i}}$ is vector with respect to $\hat{\mathrm{S}} \rightarrow \Delta \mathrm{S}=0, \pm 1, \Delta \Sigma=0, \pm 1$
$\ell_{i} \cdot \mathrm{~s}_{\mathrm{i}}$ does not operate on $|\Omega \mathrm{JM}\rangle$, only on $|\mathrm{n} \Lambda S \Sigma\rangle$; it is therefore NOT INDEPENDENT of Ω because, as vector with respect to L and S , its matrix elements are not independent of Λ and Σ.

Selection rules (ASSERTED)

$$
\begin{aligned}
& \Delta \mathrm{J}=0 \\
& \Delta \Omega=0 \\
& +\leftrightarrow-(\text { LAB INVERSION } \hat{\mathrm{I}}) \text { (parity) } \\
& \mathrm{g} \leftrightarrow \mathrm{u} \text { (body inversion } \hat{\mathrm{i}}) \\
& \Sigma^{+} \leftrightarrow \Sigma^{-}\left(\sigma_{\mathrm{v}}\right) \\
& \Delta \mathrm{S}=0, \pm 1 \\
& \Delta \Sigma=-\Delta \Lambda=0, \pm 1
\end{aligned}
$$

$\widehat{\mathbf{H}}^{\text {so }}$ is a one-electron operator, so it has non-zero matrix elements only between electronic configurations differing by a single spin-orbital. (e.g. π orbital $=1 \alpha, 1 \beta,-1 \alpha,-1 \beta$ spin-orbitals)

Special simplification (due to simple form of Wigner-Eckart Theorem). If \hat{B} is vector with respect to \widehat{A}, then $\Delta B=0$ matrix elements of a vector operator (\hat{B}) with respect to angular momentum ($\widehat{A})$ may be evaluated by replacing \widehat{B} by $b \widehat{A}$ (where b is a constant, often called a reduced matrix element)! $\mathrm{a}\left(\mathrm{r}_{\mathrm{i}}\right) \hat{\ell}_{\mathrm{i}}$ is vector with respect to $\hat{\mathrm{L}}$
\hat{s}_{i} is vector with respect to \hat{S}

For $\Delta \mathrm{L}=0, \Delta \mathrm{~S}=0$ matrix elements $\quad \sum_{\mathrm{i}} \mathrm{a}\left(\mathrm{r}_{\mathrm{i}}\right) \hat{\ell}_{\mathrm{i}} \cdot \hat{\mathrm{s}}_{\mathrm{i}} \rightarrow \mathrm{A} \hat{\mathrm{L}} \cdot \hat{\mathrm{S}} \quad$ (limited validity operator replacement)

$$
\widehat{\mathbf{H}}^{\mathrm{so}}=\mathrm{A}\left[\mathrm{~L}_{\mathrm{z}} \mathrm{~S}_{\mathrm{z}}+\frac{1}{2}\left(\mathrm{~L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}\right)\right]
$$

E.g., for ${ }^{2} \Pi$

$$
\begin{gathered}
\left\langle{ }^{2} \Pi_{ \pm 3 / 2}\right| \widehat{\mathbf{H}}^{\mathrm{so}}\left|{ }^{2} \Pi_{ \pm 3 / 2}\right\rangle=\mathrm{A}(\pm 1)\left(\pm \frac{1}{2}\right)=\frac{\mathrm{A}}{2} \\
\left.\left.\left\langle{ }^{2} \Pi_{ \pm 1 / 2}\right| \widehat{\mathbf{H}}^{\mathrm{so}}\right|^{2} \Pi_{ \pm 1 / 2}\right\rangle=\mathrm{A}(\pm 1)\left(\mp \frac{1}{2}\right)=-\frac{\mathrm{A}}{2} \\
\text { all } \Delta \Omega \neq 0 \text { matrix elements are }=0 .
\end{gathered}
$$

$\widehat{\mathbf{H}}^{\mathrm{SS}} \xrightarrow[\Delta \mathrm{S}=0]{ } \frac{2}{3} \lambda\left[3 \hat{\mathbf{S}}_{\mathrm{z}}^{2}-\hat{\mathrm{S}}^{2}\right]=\frac{2}{3} \lambda\left[3 \Sigma^{2}-\mathrm{S}(\mathrm{S}+1)\right]+$ additional term

Selection rules

$$
\begin{array}{ll}
\Delta \mathrm{S}=0 & \\
\Delta \Omega=0 & \\
\Delta \mathrm{~S}=0 & \quad \text { also } \pm 1, \pm 2 \text { neglected here }] \\
\Delta \Sigma=0 & {\left[\text { also } \Delta \Sigma=-\Delta \Lambda= \pm 2\left(\Lambda \text {-doubling in }{ }^{3} \Pi_{0} \text { neglected here }\right)\right]} \\
+\nleftarrow- & \\
\mathrm{g} \leftrightarrow \mathrm{u} & \\
\Sigma^{+} \leftrightarrow \Sigma^{-} &
\end{array}
$$

$$
\widehat{\mathbf{H}}^{\mathrm{SR}}=\gamma \hat{\mathrm{R}} \cdot \hat{\mathrm{~S}}=\gamma(\hat{\mathrm{J}}-\hat{\mathrm{L}}-\hat{\mathrm{S}}) \cdot \hat{\mathrm{S}}=\gamma[\underbrace{\mathrm{J} \cdot \mathrm{~S}-\mathrm{L} \cdot \mathrm{~S}-\mathrm{S}^{2}}]
$$

we already know how to deal with all three of these!

Now we are ready to set up full ${ }^{2} \Pi,{ }^{2} \Sigma^{+}$matrix. Start with all matrix elements of ${ }^{2} \Pi_{3 / 2}$ and then ${ }^{2} \Pi_{1 / 2}$ and then ${ }^{2} \Sigma_{1 / 2}$ etc.

$$
\left\langle\mathrm{v}, \mathrm{n},{ }^{2} \prod_{3 / 2}\right| \widehat{\mathbf{H}}=\widehat{\mathbf{H}}^{\text {elect }}+\widehat{\mathbf{H}}^{\mathrm{vib}}+\widehat{\mathbf{H}}^{\mathrm{ROT}}+\widehat{\mathbf{H}}^{\mathrm{sO}}+\widehat{\mathbf{H}}^{\mathrm{ss}}+\widehat{\mathbf{H}}^{\mathrm{SR}}\left|\mathrm{n},{ }^{2} \prod_{3 / 2}, \mathrm{v}\right\rangle=
$$

$$
\mathrm{T}_{\mathrm{e}}\left(\mathrm{n}^{2} \Pi\right)+\mathrm{G}\left(\mathrm{v}_{\Pi}\right)+\mathrm{A}_{\Pi}(\underbrace{\Lambda \Sigma}_{1 \cdot 1 / 2}+\frac{2}{3} \lambda\left(3 \cdot\left(\frac{1}{2}\right)^{2}-\frac{3}{4}\right)+\gamma_{\Pi}\left(\frac{3}{2} \cdot \frac{\Omega}{2}-1 \cdot \frac{1}{2}-\frac{3}{4}\right)^{2}
$$

$$
\text { al ways }=0 \text { for }
$$

$$
-\Omega^{2}+S^{2}-\Sigma^{2} \quad \mathrm{~S}=1 / 2 \text { states }!
$$

$$
+\mathrm{B}_{\mathrm{v}_{\Pi}}\left[\mathrm{J}(\mathrm{~J}+1)-\frac{9}{4}+\frac{3}{4}-\frac{1}{4}+{\underset{\substack{1}}{2})}_{\substack{\text { include with } \mathrm{T}_{\mathrm{c}} \\+G \text { in } \mathrm{E}_{\mathrm{v}_{\Pi}}}}\right]=\mathrm{E}_{\mathrm{v}_{\Pi}}+\frac{1}{2} \mathrm{~A}_{\Pi}-\frac{1}{2} \gamma_{\Pi}+\mathrm{B}_{\mathrm{v}_{\Pi}}(\underbrace{\mathrm{J}(\mathrm{~J}+1)-\frac{7}{4}}_{\mathrm{y}^{2}-2})
$$

$y \equiv \mathrm{~J}+1 / 2$, thus y is an integer since J is half-integer for ${ }^{2} \Pi$ and ${ }^{2} \Sigma$.
Get same results for $\left.\left.\left\langle{ }^{2} \Pi_{-3 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \Pi_{-3 / 2}\right\rangle$.

$$
\left\langle{ }^{2} \Pi_{1 / 2}\right| \widehat{\mathbf{H}}\left|{ }^{2} \Pi_{1 / 2}\right\rangle=\mathrm{E}_{\mathrm{v}_{\Pi}}-\frac{1}{2} \mathrm{~A}_{\Pi}-\frac{1}{2} \gamma_{\Pi}+\mathrm{B}_{\mathrm{v}_{\Pi}}[\underbrace{\mathrm{J}(\mathrm{~J}+1)+1 / 4}_{\mathrm{y}^{2}}]
$$

Get same results for $\left.\left.\left\langle{ }^{2} \Pi_{-1 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \Pi_{-1 / 2}\right\rangle$.

$$
\left.\left.\left.\left\langle{ }^{2} \sum_{1 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \sum_{1 / 2}\right\rangle=\left.\left\langle{ }^{2} \sum_{-1 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \sum_{-1 / 2}\right\rangle=\mathrm{E}_{\mathrm{v}_{\Sigma}}-\mathrm{A}_{\Sigma} 0 \cdot \frac{1}{2}-\frac{1}{2} \gamma_{\Sigma}+\mathrm{B}_{\mathrm{v}_{\Sigma}}[\underbrace{\mathrm{J}(\mathrm{~J}+1)-1 / 4+3 / 4-1 / 4}_{\mathrm{y}^{2}}]
$$

\uparrow always for Σ-states
[ASIDE: we have two explicit cases where, by evaluation of matrix elements, we see that $\langle\Lambda \Sigma \Omega| \widehat{\mathbf{H}}|\Lambda \Sigma \Omega\rangle=\langle-\Lambda-\Sigma-\Omega| \widehat{\mathbf{H}}|-\Lambda-\Sigma-\Omega\rangle$. But be careful, this is not true for $\left\langle\Lambda^{\prime}\right| \widehat{\mathbf{H}}|\Lambda\rangle=\left\langle-\Lambda^{\prime}\right| \widehat{\mathbf{H}}|-\Lambda\rangle$! Non-automatically-evaluable matrix elements.]

Off-Diagonal Matrix Elements
Always ask what operator do we need to get non-zero matrix element between specified basis states?

$\left.\left.\left\langle{ }^{2} \Pi_{3 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \Sigma_{-1 / 2}\right\rangle=0 \quad \Delta \Omega=2$
all done with ${ }^{2} \prod_{3 / 2}$
$\left.\left.\left\langle{ }^{2} \Pi_{1 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \prod_{-3 / 2}\right\rangle=0 \quad \Delta \Omega=2$

$$
\begin{aligned}
& \left\langle{ }^{2} \Pi_{1 / 2}\right| \hat{\mathbf{H}}\left|{ }^{2} \Sigma_{1 / 2}\right\rangle=\left\langle\left.\mathrm{v}_{\Pi}{ }^{2} \Pi_{1 / 2}\left[\frac{1}{2} \mathrm{~A}+\mathrm{B}(\mathrm{R})\right] \mathrm{L}_{+} \mathrm{S}_{-} \right\rvert\, \mathrm{v}_{\Sigma}{ }^{2} \Sigma_{1 / 2}^{+}\right\rangle \\
& \begin{array}{l}
=\left[\mathrm{S}(\mathrm{~S}+1)-\Sigma_{\Pi} \Sigma_{\Sigma}\right]^{1 / 2}[\underbrace{\left\langle\mathrm{v}_{\Pi} \mid v_{\Sigma}\right\rangle\langle\mathrm{n} \Pi| \frac{\mathrm{A}}{2} L_{+}\left|\mathrm{n}^{\prime} \Sigma\right\rangle}_{\alpha}+\underbrace{\mathrm{B}_{v_{\Pi^{\prime} \Sigma} \Sigma}\langle\mathrm{n} \Pi| \mathrm{L}_{+}\left|\mathrm{n}^{\prime} \Sigma\right\rangle}_{\beta}] \\
=1\left[\alpha_{v_{\Pi_{\Sigma} v_{\Sigma}}}+\beta_{v_{V^{\prime} \Sigma}}\right]
\end{array} \\
& \begin{aligned}
\left.\left.\left\langle{ }^{2} \prod_{1 / 2}\right| \widehat{\mathbf{H}}\right|^{2} \sum_{-1 / 2}\right\rangle & =-\mathrm{B}_{\mathrm{v}_{\Pi} v_{\Sigma}}[\underbrace{\mathrm{J}(\mathrm{~J}+1)-\frac{1}{2}\left(-\frac{1}{2}\right)}_{\mathrm{y}^{2}}]^{1 / 2}\langle\mathrm{n} \Pi| \mathrm{L}_{+}\left|\mathrm{n}^{\prime} \Sigma\right\rangle \\
& =-\beta_{\mathrm{v}_{\Pi} v_{\Sigma}} \mathrm{y}
\end{aligned}
\end{aligned}
$$

all done with ${ }^{2} \prod_{1 / 2}$

$$
\begin{aligned}
\left.\left.\left\langle{ }^{2} \sum_{1 / 2}\right| \stackrel{\widehat{\mathbf{H}}}{ }\right|^{2} \sum_{-1 / 2}\right\rangle & =-B_{v_{\Sigma}}[\underbrace{\mathrm{J}(\mathrm{~J}+1)-\frac{1}{2}\left(-\frac{1}{2}\right)}_{\mathrm{y}^{2}}]^{1 / 2}\left[\frac{3}{4}-\frac{1}{2}\left(-\frac{1}{2}\right)\right]^{\mathrm{S}_{+}} \\
& =-\mathrm{B}_{\mathrm{v}_{\Sigma}} \mathrm{y}
\end{aligned}
$$

all done with ${ }^{2} \sum_{1 / 2}$.
Are we done? Not quite. Must worry about ${ }^{2} \Sigma^{+} \sim^{2} \Pi_{-3 / 2}$ and ${ }^{2} \Sigma^{+} \sim^{2} \Pi_{-1 / 2}$ matrix elements. What happens to the $\langle\Pi| \mathrm{L}_{+}|\Sigma\rangle$ unevaluable factor? Need to consider effects of $\sigma_{\mathrm{v}}(\mathrm{xz})$ reflections and Σ^{+}, Σ^{-} symmetry in order to get the correct relative signs of off-diagonal matrix elements.

