5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #15: $^{2}\Pi$ and $^{2}\Sigma$ Matrices

 $\Delta \Omega = \Delta \Sigma = \pm 1$ within Λ -S multiplet state (S-uncoupling):

$$\left\langle n\Lambda S \Sigma \pm 1 \left| \left\langle v \right| \left\langle \Omega \pm 1 J M \left| \widehat{\mathbf{H}}^{\text{ROT}} \right| n\Lambda S \Sigma \right\rangle \right| v \right\rangle \left| \Omega J M \right\rangle = -B_v [J(J+1) - (\Omega \pm 1)\Omega]^{1/2} [S(S+1) - (\Sigma \pm 1)\Sigma]^{1/2}$$

**** In some of my handouts I call J + 1/2 = x. Here, I'll call it y ***** Here x = J(J + 1), y = J + 1/2

For example: Start by listing all relevant basis states.

$$\begin{array}{c|ccccc} & \Lambda & S & \Sigma \\ & & & \\ {}^{2}\Pi \end{array} \overbrace{\begin{array}{c} \left|n & 1 & 1/2 & 1/2\right\rangle}^{2} \Pi_{3/2} \\ & & & \\ \left|n & 1 & 1/2 & -1/2\right\rangle}^{2} \Pi_{1/2} \\ & & \\ \left|n & -1 & 1/2 & -1/2\right\rangle}^{2} \Pi_{-3/2} \\ & & \\ \left|n & -1 & 1/2 & 1/2\right\rangle}^{2} \Pi_{-1/2} \end{array}$$

Two identical blocks for $\Omega > 0$ and $\Omega < 0$ - later we will consider parity basis. What about ${}^{2}\Sigma^{+}$? Class should do this.

$$\Delta \Omega = \Delta \mathbf{A} = \pm \mathbf{1} \text{ between } \Lambda - S \text{ multiplet states } (\mathbf{L} - \mathbf{uncoupling})$$
$$\left\langle \mathbf{n}' \Lambda + \mathbf{1} S \Sigma \middle| \left\langle \mathbf{v}' \middle| \left\langle \Omega \pm \mathbf{1} \mathbf{J} \mathbf{M} \middle| \widehat{\mathbf{H}}^{\text{ROT}} \middle| \mathbf{n} \Lambda S \Sigma \right\rangle \middle| \mathbf{v} \right\rangle \middle| \Omega \mathbf{J} \mathbf{M} \right\rangle = -\mathbf{B}_{\mathbf{v}' \mathbf{v}} [\mathbf{J} (\mathbf{J} + 1) - (\Omega \pm 1) \Omega]^{1/2} \times \underbrace{\left\langle \mathbf{n}' \Lambda \pm \mathbf{1} \middle| \mathbf{L}_{\pm} \middle| \mathbf{n} \Lambda \right\rangle}{\beta}$$

a perturbation parameter to be determined by a fit to the spectrum. \uparrow

 $\hat{\mathbf{H}}^{SO}, \hat{\mathbf{H}}^{SS}, \hat{\mathbf{H}}^{SR} \begin{cases} \text{effective operators} \\ \text{matrix elements} \end{cases}$ Today: Matrix elements of ${}^{2}\Pi$, ${}^{2}\Sigma$ effective **H**.

 $\widehat{\mathbf{H}}^{SO} = \sum_{i} a(\mathbf{r}_{i})\ell_{i} \cdot \mathbf{s}_{i} \xrightarrow{\text{for } \Delta S = 0} A\widehat{\mathbf{L}} \cdot \widehat{\mathbf{S}}$

spin-orbit

(restricted validity operator replacement)

spi

n-spin
$$\widehat{\mathbf{H}}^{SS} = \underbrace{for \ \Delta S=0}_{only} \rightarrow \frac{2}{3} \lambda \left[3\widehat{\mathbf{S}}_z^2 - \widehat{\mathbf{S}}^2 \right] + another term \Delta \Sigma = -\Delta \Lambda = \pm 2$$

spin-rotation $\widehat{\mathbf{H}}^{SR} = \gamma \widehat{\mathbf{R}} \cdot \widehat{\mathbf{S}}$

usually λ , γ are very small with respect to A and are dominated by second-order spin-orbit effects (thru van Vleck transformation)-discussed later

$$\widehat{\mathbf{H}}^{SO}$$
 is very important

 $\hat{\ell}_i, \hat{s}_i$ are vectors with respect to $\hat{J} \rightarrow \hat{\ell}_i \cdot \hat{s}_i$ is scalar ($\Delta J = \Delta M = \Delta \Omega = 0$) with respect to \hat{J} .

 \hat{s}_i is vector with respect to $\hat{S} \rightarrow \hat{\ell}_i \cdot \hat{s}_i$ is vector with respect to $\hat{S} \rightarrow \Delta S = 0, \pm 1, \Delta \Sigma = 0, \pm 1$

Fine point!

 ℓ_i 's_i does not operate on $|\Omega JM\rangle$, only on $|n\Lambda S\Sigma\rangle$; it is therefore NOT INDEPENDENT of Ω because, as vector with respect to L and S, its matrix elements are not independent of Λ and Σ .

Selection rules (ASSERTED)

$$\begin{split} &\Delta J = 0 \\ &\Delta \Omega = 0 \\ &+ \not\leftrightarrow - (LAB \text{ INVERSION } \hat{1}) \text{ (parity)} \\ &g \not\leftrightarrow u \text{ (body inversion } \hat{i}) \\ &\Sigma^+ \leftrightarrow \Sigma^- (\sigma_v) \\ &\Delta S = 0, \pm 1 \\ &\Delta \Sigma = -\Delta \Lambda = 0, \pm 1 \end{split}$$

 $\widehat{\mathbf{H}}^{\text{SO}}$ is a one-electron operator, so it has non-zero matrix elements only between electronic configurations differing by a single spin-orbital. (e.g. π orbital = 1 α , 1 β , -1 α , -1 β spin-orbitals)

Special simplification (due to simple form of Wigner-Eckart Theorem). If \hat{B} is vector with respect to \hat{A} , then $\Delta B = 0$ matrix elements of a vector operator (\hat{B}) with respect to angular momentum (\hat{A}) may be evaluated by replacing \hat{B} by b \hat{A} (where b is a constant, often called a reduced matrix element)!

 $a(r_i)\hat{\ell}_i$ is vector with respect to \hat{L}

 \hat{s}_i is vector with respect to \hat{S}

For $\Delta L = 0$, $\Delta S = 0$ matrix elements $\sum_{i} a(r_i) \hat{\ell}_i \cdot \hat{s}_i \rightarrow A\hat{L} \cdot \hat{S}$

(limited validity operator replacement)

$$\widehat{\mathbf{H}}^{\mathrm{SO}} = \mathbf{A} \left[\mathbf{L}_{z} \mathbf{S}_{z} + \frac{1}{2} \left(\mathbf{L}_{+} \mathbf{S}_{-} + \mathbf{L}_{-} \mathbf{S}_{+} \right) \right]$$

E.g., for ${}^{2}\Pi$

$$\left\langle {}^{2} \prod_{\pm 3/2} \left| \widehat{\mathbf{H}}^{SO} \right| {}^{2} \prod_{\pm 3/2} \right\rangle = \mathbf{A}(\pm 1) \left(\pm \frac{1}{2} \right) = \frac{\mathbf{A}}{2}$$
$$\left\langle {}^{2} \prod_{\pm 1/2} \left| \widehat{\mathbf{H}}^{SO} \right| {}^{2} \prod_{\pm 1/2} \right\rangle = \mathbf{A}(\pm 1) \left(\mp \frac{1}{2} \right) = -\frac{\mathbf{A}}{2}$$
all $\Delta \Omega \neq 0$ matrix elements are = 0.

$$\widehat{\mathbf{H}}^{SS} \xrightarrow{\Delta S=0} \frac{2}{3} \lambda \left[3\widehat{S}_{z}^{2} - \widehat{S}^{2} \right] = \frac{2}{3} \lambda \left[3\Sigma^{2} - S(S+1) \right] + \text{ additional term}$$

Selection rules

 $\Delta S = 0$

 $\Delta \Omega = 0$ $\Delta S = 0$ [also ± 1 , ± 2 neglected here] [also $\Delta \Sigma = -\Delta \Lambda = \pm 2$ (Λ -doubling in ${}^{3}\Pi_{0}$ neglected here)] $\Delta \Sigma = 0$ $+ \not\leftrightarrow$ $g \nleftrightarrow u$ $\Sigma^+ \nleftrightarrow \Sigma^-$

$$\widehat{\mathbf{H}}^{SR} = \gamma \widehat{\mathbf{R}} \cdot \widehat{\mathbf{S}} = \gamma (\widehat{\mathbf{J}} - \widehat{\mathbf{L}} - \widehat{\mathbf{S}}) \cdot \widehat{\mathbf{S}} = \gamma [\underbrace{\mathbf{J} \cdot \mathbf{S} - \mathbf{L} \cdot \mathbf{S} - \mathbf{S}^2}_{\text{we already know how to}}]$$

deal with all three of these!

Now we are ready to set up full ${}^{2}\Pi$, ${}^{2}\Sigma^{+}$ matrix. Start with all matrix elements of ${}^{2}\Pi_{3/2}$ and then ${}^{2}\Pi_{1/2}$ and then $^{2}\Sigma_{1/2}$ etc.

$$\left\langle \mathbf{v}, \mathbf{n}, {}^{2}\Pi_{3/2} \middle| \widehat{\mathbf{H}} = \widehat{\mathbf{H}}^{\text{elect}} + \widehat{\mathbf{H}}^{\text{vib}} + \widehat{\mathbf{H}}^{\text{ROT}} + \widehat{\mathbf{H}}^{\text{SO}} + \widehat{\mathbf{H}}^{\text{SS}} + \widehat{\mathbf{H}}^{\text{SR}} \middle| \mathbf{n}, {}^{2}\Pi_{3/2}, \mathbf{v} \right\rangle =$$

$$T_{e} \left(\mathbf{n}^{2}\Pi \right) + G \left(\mathbf{v}_{\Pi} \right) + A_{\Pi} \left(\underbrace{1\cdot1/2}_{1\cdot1/2} \right) + \frac{2}{3} \lambda \left(3 \left(\frac{1}{2} \right)^{2} - \frac{3}{4} \right) + \gamma_{\Pi} \left(\frac{3}{2} \cdot \underbrace{\frac{5}{2}}_{2} - 1 \cdot \underbrace{\frac{5}{2}}_{2} - 3 + \underbrace{\frac{5}{2}}_{4} \right) \right)$$

$$+ B_{v_{\Pi}} \left[J (J+1) - \frac{9}{4} + \frac{3}{4} - \frac{1}{4} + \underbrace{1}_{2} \right] = E_{v_{\Pi}} + \frac{1}{2} A_{\Pi} - \frac{1}{2} \gamma_{\Pi} + B_{v_{\Pi}} \left(J (J+1) - \frac{7}{4} \right)$$

$$\underbrace{ \text{include with } T_{e} }$$

 $y \equiv J + 1/2$, thus y is an integer since J is half-integer for ${}^{2}\Pi$ and ${}^{2}\Sigma$.

Get same results for $\langle {}^{2}\Pi_{-3/2} | \widehat{\mathbf{H}} | {}^{2}\Pi_{-3/2} \rangle$.

$$\left< {}^{2}\Pi_{1/2} |\widehat{\mathbf{H}}| {}^{2}\Pi_{1/2} \right> = E_{v_{\Pi}} - \frac{1}{2}A_{\Pi} - \frac{1}{2}\gamma_{\Pi} + B_{v_{\Pi}} \left[\underbrace{J(J+1) + 1/4}_{v^{2}} \right]$$

Get same results for $\langle {}^{2}\prod_{-1/2} |\widehat{\mathbf{H}}| {}^{2}\prod_{-1/2} \rangle$.

$$\left\langle {}^{2}\Sigma_{1/2} \left| \widehat{\mathbf{H}} \right| {}^{2}\Sigma_{1/2} \right\rangle = \left\langle {}^{2}\Sigma_{-1/2} \left| \widehat{\mathbf{H}} \right| {}^{2}\Sigma_{-1/2} \right\rangle = E_{v_{\Sigma}} - A_{\Sigma} 0 \cdot \frac{1}{2} - \frac{1}{2} \gamma_{\Sigma} + B_{v_{\Sigma}} \left[\underbrace{J(J+1) - 1/4 + 3/4 - 1/4}_{y^{2}} \right]$$

$$\uparrow \text{ always for } \Sigma \text{-states}$$

[ASIDE: we have two explicit cases where, by evaluation of matrix elements, we see that $\langle \Lambda \Sigma \Omega | \widehat{\mathbf{H}} | \Lambda \Sigma \Omega \rangle = \langle -\Lambda - \Sigma - \Omega | \widehat{\mathbf{H}} | -\Lambda - \Sigma - \Omega \rangle$. But be careful, this is not true for $\langle \Lambda' | \widehat{\mathbf{H}} | \Lambda \rangle = \langle -\Lambda' | \widehat{\mathbf{H}} | -\Lambda \rangle$! Non-automatically-evaluable matrix elements.]

Off-Diagonal Matrix Elements

Always ask what operator do we need to get non-zero matrix element between specified basis states?

$$\langle {}^{2}\Pi_{3/2} | \widehat{\mathbf{H}} | {}^{2}\Pi_{-1/2} \rangle = 0 \qquad \Delta \Omega = 2$$

$$\langle {}^{2}\Pi_{3/2} | \widehat{\mathbf{H}} | {}^{2}\Pi_{-3/2} \rangle = 0 \qquad \Delta \Omega = 3$$

$$\langle {}^{2}\Pi_{3/2} | \widehat{\mathbf{H}} | {}^{2}\Sigma_{1/2}^{+} \rangle = - \langle \underline{\mathbf{v}}_{\Pi} | \mathbf{B}(\mathbf{R}) | \underline{\mathbf{v}}_{\Sigma} \rangle \left[\mathbf{J}(\mathbf{J}+1) - \frac{3}{2} \frac{1}{2} \right]^{1/2} \langle \underline{\mathbf{n}}_{\Pi} | \mathbf{L}_{+} | \mathbf{n}' \Sigma \rangle$$

$$= -\beta_{\mathbf{v}_{\Pi} \mathbf{v}_{\Sigma}} \left[\mathbf{y}^{2} - 1 \right]^{1/2}$$

 $\left\langle {}^{2}\prod_{3/2}\left|\widehat{\mathbf{H}}\right|{}^{2}\sum_{-1/2}\right\rangle = 0$ $\Delta\Omega = 2$

all done with ${}^{2}\Pi_{3/2}$

 $\left< {}^{2}\prod_{1/2} \left| \widehat{\mathbf{H}} \right| {}^{2}\prod_{-3/2} \right> = 0 \qquad \Delta \Omega = 2$

$$\left\langle {}^{2}\Pi_{1/2} \left| \widehat{\mathbf{H}} \right| {}^{2}\Sigma_{1/2} \right\rangle = \left\langle {}^{\mathbf{v}}_{\Pi} {}^{2}\Pi_{1/2} \left[\frac{1}{2} \mathbf{A} + \mathbf{B}(\mathbf{R}) \right] \mathbf{L}_{+} \mathbf{S}_{-} \left| \mathbf{v}_{\Sigma} {}^{2}\Sigma_{1/2}^{+} \right\rangle$$

$$= \left[\mathbf{S}(\mathbf{S}+1) - \Sigma_{\Pi} \Sigma_{\Sigma} \right]^{1/2} \left[\left\langle \mathbf{v}_{\Pi} \left| \mathbf{v}_{\Sigma} \right\rangle \left\langle \mathbf{n} \Pi \left| \frac{\mathbf{A}}{2} \mathbf{L}_{+} \left| \mathbf{n}' \Sigma \right\rangle \right. + \mathbf{B}_{\mathbf{v}_{\Pi} \mathbf{v}_{\Sigma}} \left\langle \mathbf{n} \Pi \left| \mathbf{L}_{+} \right| \mathbf{n}' \Sigma \right\rangle \right]$$

$$= \mathbf{I} \left[\alpha_{\mathbf{v}_{\Pi} \mathbf{v}_{\Sigma}} + \beta_{\mathbf{v}_{\Pi} \mathbf{v}_{\Sigma}} \right] \qquad \alpha \qquad \beta$$

$$\left\langle {}^{2}\Pi_{1/2} | \widehat{\mathbf{H}} | {}^{2}\Sigma_{-1/2} \right\rangle = -B_{v_{\Pi}v_{\Sigma}} \left[J(J+1) - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \left\langle n \prod | L_{+} | n' \Sigma \right\rangle$$
$$= -\beta_{v_{\Pi}v_{\Sigma}} y \qquad y^{2}$$

all done with ${}^{2}\Pi_{1/2}$

$$\left\langle {}^{2} \sum_{1/2} \left| \widehat{\mathbf{H}} \right| {}^{2} \sum_{-1/2} \right\rangle = -B_{v_{\Sigma}} \left[\underbrace{J(J+1) - \frac{1}{2} \left(-\frac{1}{2} \right)}_{y^{2}} \right]^{1/2} \left[\frac{3}{4} - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \\ = -B_{v_{\Sigma}} y$$

all done with $^{2}\Sigma_{1/2}$.

Are we done? Not quite. Must worry about ${}^{2}\Sigma^{+} \sim {}^{2}\prod_{-3/2}$ and ${}^{2}\Sigma^{+} \sim {}^{2}\prod_{-1/2}$ matrix elements. What happens to the $\langle \prod | L_{+} | \Sigma \rangle$ unevaluable factor? Need to consider effects of $\sigma_{v}(xz)$ reflections and Σ^{+} , Σ^{-} symmetry in order to get the correct relative signs of off-diagonal matrix elements.