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Lecture #15: 2∏ and 2∑ Matrices 

Last Time:	 effect of A2 , A i , A±  on |A α MA〉 basis set 
case (a) basis set |n(L) Λ S ∑〉 |v〉 |ΩJM〉
L-destroyed, but not Λ: L z , L± , selection rules 

H
ROT 

= B(R)R2  matrix elements 

n′Λ′S′Diagonal: ′∑ ′v ΩJM H ROT 
nΛS∑ v ΩJM  = δn′nδΛ′ΛδS′Sδ∑′∑δv′vδΩ′ΩδJ′JδM′M 

× Bv[J(J + 1) – Ω2 + S(S + 1) – ∑2 + L2 
⊥ ] 

∆Ω = ∆∑ = ±1 within Λ–S multiplet state (S-uncoupling): 

nΛS∑±1 v Ω ±1JM H ROT 
nΛS∑ v ΩJM  = –Bv[J(J + 1) – (Ω ± 1)Ω]1/2[S(S + 1) – 

(∑ ± 1)∑]1/2 

**** In some of my handouts I call J + 1/2 = x. Here, I'll call it y *****
Here x = J(J + 1), y = J + 1/2 

For example: Start by listing all relevant basis states. 
Λ S Σ 

2∏ n 

n 

n 

n 

1 1 / 2 1 / 2 

1 1 / 2 −1 / 2 

−1 1 / 2 −1 / 2 

−1 1 / 2 1 / 2 

2 ∏3/2 
2 ∏1/2 
2 ∏−3/2 
2 ∏−1/2 

H ROT 2 ∏( ) = 2 ∏3/2 x − 9 
4 + 3 

4 − 1 
4 −[x − 3 

4 ]
1/2 [ 3 

4 + 1 
4 ]

1/2 0 
2 ∏1/2 sym x − 1 

4 + 3 
4 − 1 

4 0 0 
2 ∏−1/2 0 0 x − 1 

4 + 3 
4 − 1 

4 − [x − 3 
4 ]

1/2 1 
2 ∏−3/2 0 0 sym x − 9 

4 + 3 
4 − 1 

4 

Bv 
π × 

∆Ω = ±1 
∆Λ = ±2 

Bv 
π 

0


⎛
x − 4
7 (x − 4

3 )1/2 0 0 ⎞

⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


x + 1 
4 0 0 

1 
4 

3 
4 

sym 

)1/2 0 0 (x −x + 

0 0 sym x − 74 

Two identical blocks for Ω > 0 and Ω < 0 - later we will consider parity basis.
What about 2∑+? Class should do this. 
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∆Ω = ∆Λ = ±1 between Λ-S multiplet states (L-uncoupling) 

′n Λ +1S∑ ′v Ω ±1JM H ROT 
nΛS∑ v ΩJM  = –Bv′v[J(J + 1) – (Ω ± 1)Ω]1/2 × n′Λ ±1 L± nΛ 

 
β 

a perturbation parameter to be determined by a fit to the spectrum. ↑ 

effective operators
Today: H

SO 
, H

SS 
, H

SR ⎧
⎨
⎩
matrix elements 

2∑ effective H.Matrix elements of 2∏, 

H
SO 

=spin-orbit ∑ a(ri ) i ·si for  ∆ S=0⎯⎯⎯ AL⎯ only 
→ ·S (restricted validity operator replacement) 

i 

for  ∆ S=0spin-spin H
SS 

⎯ only → 2
3 
λ⎡⎣3S

2
z − S

2 ⎤⎦+ another term ∆ ∑ = −∆ Λ = ±2= ⎯⎯⎯ 

spin-rotation H
SR 

= γR·S 

usually λ, γ are very small with respect to A and are dominated by second-order spin-orbit effects (thru
van Vleck transformation)—discussed later 

H
SO

 is very important 

⎛
 ⎞

H

SO
 ∑
a(ri )̂ i ·ŝi
 ∑ â i ·ŝ j
not
⎜⎜
⎝


⎟⎟
⎠


=

i


electron (not
component) 

i, j

L S 

 i , ŝi  are vectors with respect to J →  i ·ŝi  is scalar (∆J = ∆M = ∆Ω = 0) with respect to J . 

ŝi  is vector with respect to S →  i ·ŝi  is vector with respect to S → ∆S = 0, ±1, ∆∑ = 0, ±1 

i·si does not operate on |ΩJM〉, only on |nΛS∑〉; it is therefore NOT INDEPENDENT of Ω because, as 
vector with respect to L and S, its matrix elements are not independent of Λ and ∑. 



5.80 Lecture #15	 Fall, 2008 Page 3 of 6 pages 

Selection rules (ASSERTED)	 ∆J = 0 
∆Ω = 0 
+ ↔/  – (LAB INVERSION I ) (parity)

g ↔/  u (body inversion î )

∑+ ↔ ∑– (σv)

∆S = 0, ±1

∆∑ = –∆Λ = 0, ±1


H
SO

 is a one-electron operator, so it has non-zero matrix elements only between electronic
configurations differing by a single spin-orbital. (e.g. π orbital = 1α, 1β, –1α, –1β spin-orbitals) 

Special simplification (due to simple form of Wigner-Eckart Theorem). If B  is vector with respect to 
A , then ∆B = 0 matrix elements of a vector operator ( B ) with respect to angular momentum ( A ) may 
be evaluated by replacing B  by bA  (where b is a constant, often called a reduced matrix element)! 

a ri
 i  is vector with respect to L( )
ŝi  is vector with respect to S 

For ∆L = 0, ∆S = 0 matrix elements a ri  i ·ŝi → AL·S (limited validity operator replacement)∑ ( )  

i 


SO ⎡	 ⎤H = A LzSz 

1 (L+S− + L−S+ )⎣⎢ + 
2 ⎦⎥ 

E.g., for 2∏ 

⎛ 1 ⎞ A = A(±1)⎜± ⎟ =2 ∏±3/2 H
SO 2 ∏±3/2 ⎝ 2 ⎠ 2 

= A(±1)⎜
⎛
 
1 ⎞ A 

⎝ 2 
⎟
⎠
= − 

2 
2 ∏±1/2 H

SO 2 ∏±1/2 

all ∆Ω ≠ 0 matrix elements are = 0. 

H
SS 
⎯⎯⎯ → 2 λ⎡⎣3S

2
z − S

2 ⎤⎦ = 
2 λ⎡⎣3∑2 −S(S +1) ⎤⎦+  additional term ∆ S=0 3	 3 
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Selection rules	 ∆S = 0 
∆Ω = 0 
∆S = 0 [also ±1, ±2 neglected here]
∆∑ = 0 [also ∆∑ = –∆Λ = ±2 (Λ-doubling in 3∏0 neglected here)] 
+ ↔/  – 
g ↔/  u 
∑+ / ∑– ↔

H
SR 

= γR·S = γ(J – L – S)·S = γ[J·S − L·S − S2 
 ]
we already know how to
deal with all three of these! 

Now we are ready to set up full 2∏, 2∑+ matrix. Start with all matrix elements of 2∏3/2 and then 2∏1/2 and 
then 2∑1/2 etc. 

v,n, 2 ∏3/2 H = H elect 
+ H vib 

+ H ROT 
+ H

SO 
+ H

SS 
+ H

SR 
=n, 2 ∏3/2 , v 

3∑2 – S(S + 1) 

( ) + G v∏ ) + A∏ 
(1·1 / ) + 2 ⎛ 

3·⎛ 1 ⎞ 2 

− 
3⎞ ⎛ 3 1

2 
− 1·1 3⎞ 

Ω ∑ Λ ∑ S(S+1)Λ∑ 

Te n2 ∏ (	 3 
λ
⎝⎜ ⎝⎜ 2 ⎠⎟ 4 ⎠⎟ 

+ γ ∏ ⎝⎜ 2
·

2 
− 

4 ⎠⎟ 

always = 0 for
–Ω2 +S2 – ∑2 S = 1/2 states! 

+Bv∏ 

⎡
⎣⎢
J(J + 1) −	

9
4 

+ 
4
3 − 

1
4 

+ 2
⎥⎦
⎤

⊥L = Ev∏ 

1
2 

A∏ − 
1
2 
γ ∏ + Bv∏ 

⎛
⎝⎜ J(J + 1) − 

4
7 ⎞
⎠⎟+ 

include with Te 
+ G in Ev∏ 

y2 – 2 

y ≡ J + 1/2, thus y is an integer since J is half-integer for 2∏ and 2∑. 

Get same results for . 2 ∏−3/2 H 2 ∏−3/2 

= Ev∏ − 
1 1 ⎡J(J +1) +1 / 4⎤2 ∏1/2 H 2 ∏1/2 2
A∏ − 

2 
γ∏ + Bv∏  

⎣⎢ y2 


⎦⎥ 

2
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Get same results for . 2 ∏−1/2 H 2 ∏−1/2 

= = Ev∑ − A∑ 0·
1
2 
− 
1
2 
γ∑ + Bv∑ 

⎡
⎣⎢
J(J +1) −1 / 4 

y2 

+ 3 / 4 −1 / 4 ⎤
⎦⎥ 

2 ∑1/2 H 2 ∑1/2 
2 ∑−1/2 H 2 ∑−1/2  

↑ always for ∑-states 

[ASIDE: we have two explicit cases where, by evaluation of matrix elements, we see that 
Λ∑Ω H Λ∑Ω = −Λ −∑−Ω H −Λ −∑−Ω . But be careful, this is not true for 

Λ′ H Λ = −Λ′ H −Λ ! Non-automatically-evaluable matrix elements.] 

Off-Diagonal Matrix Elements

Always ask what operator do we need to get non-zero matrix element between specified basis states?


1 
2 
(J+S− + J−S

1/2 
+ ) 

1/2 1/2 

= = −0A∏ + ⎢
⎡ 1 ⎛ 3⎞

⎠⎟ 
⎤
⎥ γ∏ − Bv∏ 

⎡
⎣⎢
x − 

1 3 ⎤ ⎡ 3 1 ⎛ 1 ⎞ ⎤2 ∏3/2 H 2 ∏1/2 
2 ∏−3/2 H 2 ∏−1/2 ⎣2 ⎝⎜ 

x − 
4 ⎦ 2 2 ⎦⎥ ⎣⎢ 4 

− 
2 ⎝⎜

− 
2 ⎠⎟ ⎦⎥ 

∆Ω = 0 [y2 – 1]1/2 1 

= 0 ∆Ω = 22 ∏3/2 H 2 ∏−1/2 

= 0 ∆Ω = 32 ∏3/2 H 2 ∏−3/2 

–BJ–L+ J+ 

⎡+H n′∑B(R) v∑ J(J +1) − 
3 1⎤1/2 

n∏= − v∏ L+ 
2 ∏3/2 

2 ∑1/2 ⎣⎢ 2 2⎦⎥ 

= −βv∏ v∑ 

⎡⎣ 
B

y
v∏ 

2
v∑

−1⎤⎦
1/2 β(∏,∑) 

= 0 ∆Ω = 22 ∏3/2 H 2 ∑−1/2 

all done with 2∏3/2 

= 0 ∆Ω = 22 ∏1/2 H 2 ∏−3/2 
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v∏ 
2 ∏1/2 

⎡
⎣⎢ 
1
2 

A + B(R)⎦⎥
⎤
L+S− 

from AL·S from 2BL·S 

v∑ 
+=2 ∏1/2 H 2 ∑1/2 

2 ∑1/2 

⎤A n′∑ + Bv∏ v∑ 
n∏ L+ = ⎡⎣S(S +1) −∑∏ ∑∑⎤⎦

1/2 
⎢
⎡ 

v∏ v∑ n∏
 L+
 n′∑ ⎥2⎣ ⎦
= 1⎡⎣αv∏ v∑ 

+ βv∏ v∑
⎤⎦ α β 

–BJ–L+ 

n′∑= −Bv∏ v∑ ⎣⎢
⎡
J(J +1) 

⎠
− 
2
1 
⎝
⎜
⎛
− 
2
1 ⎟
⎞
⎦⎥
⎤1/2 

n∏ L+ 
2 ∏1/2 H 2 ∑−1/2 

= −βv∏ v∑ 
y y2 

all done with 2∏1/2 

–BJ–S+ J+ S+ 

H = −Bv∑ ⎢
⎡J(J + 1) − 

2
1 
⎝⎜
⎛ − 
2
1 


⎠⎟
⎞
⎥
⎤
1/2 

⎣⎢
⎡ 
4
3 − 

2
1 
⎝⎜
⎛ − 
2
1 
⎠⎟
⎞
⎦⎥
⎤
1/2 

2 ∑1/2 
2 ∑−1/2 

⎢ ⎥ 
⎣ y2 ⎦ 

= −Bv∑ 
y 

all done with 2∑1/2. 

Are we done? Not quite. Must worry about 2∑+ ~ 2∏–3/2 and 2∑+ ~ 2∏–1/2 matrix elements. What 
happens to the 〈∏|L+|∑〉 unevaluable factor? Need to consider effects of σv(xz) reflections and ∑+, ∑– 

symmetry in order to get the correct relative signs of off-diagonal matrix elements. 


