
MIT OpenCourseWare 
http://ocw.mit.edu 

5.80 Small-Molecule Spectroscopy and Dynamics 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Lecture # 14 Supplement 

ROTATION AND ANGULAR MOMENTA 

The matrix elements for the rotational Hamiltonian matrix will be derived. The matrix ele
ments of several angular momentum operators will be listed, not derived, and several important 
commutation rules will be stated. 

I. Nomenclature 

Following is a list of quantum numbers used to label the rotational energy levels of diatomic 
molecules in the presence of spin and orbital angular momenta: 

Projection on Internuclear Axis 
Total angular momentum J Jz = Ω = Λ + Σ

Orbital angular momentum L Lz = Λ

Spin S Sz = Σ

End-over-end rotation R none, Rz = 0

J N Nz = Lz
∼ − S ∼
Projection of J on lab-fixed axis M — 

J ≡ R + L + S (1) 

Electronic states are usually designated as follows: The component of the orbital angular mo
mentum along the internuclear axis, Λ, is represented by a capital Greek letter 

Λ = 0 1 2 3 4 
Σ Π Δ Φ Γ 

There is a left superscript corresponding to the spin-multiplicity of the state. The spin-multiplicity 
is 2S + 1, where S is the total electron spin. There is a right subscript, Ω, which corresponds to the 
projection of J on the internuclear axis. So an electronic state is designated 2S+1ΛΩ. For example 
3Δ3 means S = 1, Λ = 2, Ω = 3. 

Often there is a letter in front of this symbol which tells us which such state is meant. Transitions 
between states are usually specified as follows, regardless of whether the transition is emission or 
absorption: 

1 
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A. The upper state is listed first. 

B. The upper state quantum numbers are listed with a single prime, the lower state with double 
prime (and very rarely with no prime). 

C. Rotational transitions are specified as P (J), Q(J), R(J) (sometimes N , O, S, T also) where 
the letter indicates the change in the pattern-forming rotational quantum number, J in case 
(a) and N in case (b). |ΔJ | ≤ 1. For simplicity the pattern-forming quantum number will be 
designated by J here. The J in parentheses is always J ��, the J of the lower level. The letter 
used has the meaning 

N O P Q R S T

J � = J �� − 3 J �� − 2 J �� − 1 J �� J �� + 1 J �� + 2 J �� + 3.


D. Often two letters are used to specify a rotational transition: P Q(J). The lower letter tells you 
the change in J , the upper the change in N . 

E. The letter used to identify the electronic state obeys some rules too.	 A capital X implies 
the ground state. The excited states are usually labeled alphabetically in order of increase in 
energy. Capital letters are used for excited states of the same multiplicity (same value of spin 
S) as the ground state. Small letters are used for states of other multiplicities. 

F. There are other symbols which will be discussed later such as g and u, s and a, + and −, e 
and f . 

II. The Rotational Hamiltonian 

The rotational Hamiltonian is deceptively simple in appearance 

H = BR2 .	 (2) 

There are two complications. The first is that B is actually B(r), thus it has off-diagonal matrix 
elements between the vibrational eigenfunctions which correspond to the molecular potential curve 
V (r). This problem will be treated by second order perturbation theory in a later handout. Second, 
the matrix elements of R2 are exceptionally nontrivial. Our first task will be to re-express the R2 

operator in terms of operators whose matrix elements are easily derived. 

R = J − L − S	 (3) 

Note that R has no z–component because it is associated with end-over-end molecular rotation. 
Another way of looking at this is that there can be no rotational angular momentum about the 
internuclear axis because the nuclei are point masses and the moment of inertia for such rotation 
is zero. Thus 

R2 = R2 + R2	 (4)x y 
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Let us define ladder-type operators of the form 

R+ = Rx + iRy


R− = Rx − iRy (5)


Thus 
1 

R2 = (R+R− + R−R+). (6)
2

Equation (6) is not more complicated than it needs to be because angular momentum operators 
have the obnoxious property of not commuting — that means that often 

A B = B A. (7)· � · 

A commutator is defined [A, B] = A B − B A. We will need to know the following commutators: · · 

[J±, J�] = ±i�Jz (8) 

[J±, V�] = ±i�Vz where V = L, S (9) 

[V±, V�] = ±i�Vz (10) 

[L±, S�] = 0 (11) 

Returning to our analysis of R2, we know 

R± = J± − L± − S± (12) 

R+R− = J+J− + L+L− + S+S− − (J+L− + L+J−) − (J+S− + S+J−) + (L+S− + S+L−) (13) 

Thus 

1 1 1 1 
(R+R− + R−R+) = (J+J− + J−J+) + (L+L− + L−L+) + (S+S− + S−S+)

2 2 2 2
1 − 
2
(J+L− + J−L+ + L+J− + L−J+) 

1 − 
2
(J+S− + J−S+ + S+J− + S−J+) 

1 
+ (L+S− + L−S+ + S+L− + S−L+) (14)

2

But 
1 
(J+J− + J−J+) = J2 

x + J2 
y = J2 − J2 

z (15)
2

and similarly for the L+L− and S+S− terms. Next 

1 
(J+L− + J−L+ + L+J− + L−J+) = (2J+L− + [L−, J+] + 2J−L+ + [L+J−]) (16)

2
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but since 
[L−, J+] = −[L+, J−] 

thus 
1 
(J+L− + J−L+ + L+J− + L−J+) = (J+L− + J−L+). (17)

2

A similar result is obtained for the J, S cross terms. For the L, S cross terms [L±, S�] = 0 so we 
get the same simplification but for a different reason. Collecting terms 

R2 = (J2 − Jz
2)+(S2 − S2 

z)+(L2 − Lz
2) − (J+L− + J−L+) − (J+S− + J−S+)+(L+S− + L−S+) (18) 

This operator algebra has been rigorous and no choice of basis set has yet been implied. 

III. Matrix Elements 

We are now ready to pick a basis set and evaluate the BR2 matrix elements. A convenient set 
of quantum numbers is n, Λ, S, Σ where n tells us which electronic state of quantum numbers Λ, 
S, Σ we mean (i.e., which potential curve). We also designate v to specify the exact vibrational 
eigenfunction that belongs to the potential curve indexed by n, Λ, S, Σ. Finally we specify Ω, J, M . 
We will see that Ω is not a good quantum number but we preserve it as a useful index in specifying 
the spin-components of a state. M will not concern us because in the absence of applied magnetic 
or electric fields, M is always a good quantum number. Also, M does not appear in the rotational 
Hamiltonian or any of its field free matrix elements. Our basis functions are product functions 

|v� |nΛSΣ� |ΩJM� . 

We will need the following matrix elements 

�(Ω � 1)J�M �|J±|ΩJM� = δJ �J δM �M �[J � Ω + 1)(J ± Ω)]1/2 (19) 

�Ω�J �M �|Jz|ΩJM� = �ΩδΩ�ΩδJ �J δM �M (19a) 

�n�Λ�S �(Σ ± 1)|S±|nΛSΣ� = δΛ�ΛδS�S �[(S � Σ)(S ± Σ + 1)]1/2 (20) 

�n�Λ�S �Σ�|Sz|nΛSΣ� = δΛ�ΛδS�S δΣ�Σ�Σ (20a) 

�n�(Λ ± 1)S �Σ�|L±|nΛSΣ� = δS�SδΣ�Σ�[(L � Λ)(L ± Λ + 1)]1/2 (21) 

�n�Λ�S �Σ�|Lz|nΛSΣ� = δS�SδΣ�ΣδΛ�Λ�Λ (21a) 

The matrix element for L± in equation (21) is a fake because it is usually not possible to know or 
specify L for a diatomic molecule. The Λ selection rule is left unchanged by this ambiguity, but the 
matrix element of (21) is usually left as an unspecified constant. 

Ω�J �M � J2 ΩJM = δJ �J δΩ�ΩδM �M �2J(J + 1) (22) 

�� 
n�Λ�S �Σ�|

|
S2|
|
nΛSΣ 

�� 
= δΛ�ΛδS�S δΣ�Σ�2S(S + 1) (23) 

n�Λ�S �Σ�|L2|nΛSΣ = δΛ�ΛδS�S δΣ�Σ (unknown constant) (24) 
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The unknown constant of matrix element (24) is unknown due to our inability to specify L for a 
diatomic molecule. 

It is now possible to write the matrix elements of BR2 

�v�| �n�Λ�S �Σ�| �Ω�J �M �|� 
BR2 |ΩJM� |nΛSΣ� |v� � 

= �2 B(r) [J(J + 1) − Ω2] + [S(S + 1) − Σ2] + [L2 ] + off-diagonal elements (25)�v�| |v� ⊥

Remember that L2 is some sort of unknown constant. The J±L�, J±S�, and L±S� matrix elements ⊥
are what make life difficult, because they are responsible for all of the non-diagonal matrix elements. 

J+L decreases Ω and Λ by 1 − 

J+S decreases Ω and Σ by 1 − 

L+S increases Λ by 1, decreases Σ by 1, and of course Ω is left unchanged. −
The J±S� matrix elements are easily shown to be 

�(Ω � 1)J �M �| �n�Λ�S �(Σ � 1)| J±S� |nΛSΣ� |ΩJM� 
= �2δΛ�ΛδS�S δJ �J δM �M [(S ± Σ)(S � Σ + 1)(J � Ω + 1)(J ± Ω)]1/2 (26) 

It is now possible to write down the elements of the BR2 matrix for any electronic state and also 
for “perturbations” between electronic states. The terms responsible for such perturbations are the 
J±L� and L±S� matrix elements. 

IV. Other Important Interactions 

So far we have not considered a very important part of the Hamiltonian operator, the spin-orbit 
interaction. It is appropriate to consider the spin-orbit and other magnetic dipole-magnetic dipole 
interactions such as spin-spin and spin-rotation interactions simultaneously with the rotational part 
of the Hamiltonian because the energies involved are all of comparable magnitude. In the interest 
of simplicity I will not derive the correct forms of Hspin-orbit, Hspin-spin, and Hspin-rotation, but will 
present a phenomenological form of these terms which has matrix elements nearly identical with 
the correct forms. 

Hspin-orbit = AL S (27)· 

where A has the magic property of being able to change S by ±1. AL S cannot have matrix · 
elements off diagonal in J , M , or Ω. 

1 
L S = LzSz + (L+S− + L−S+) (28)· 

2
Hspin-rotation = γR S (29)· 

= γ(J − L − S) S (30)· 

This is a small term and will usually be too small to observe. 

2 � � 1 � � 
Hspin-spin = γ 3Sz 

2 − S2 + α S+
2 + S2 (31)

3 2 − 
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The spin-spin term is intermediate in size between spin-orbit and spin-rotation and is usually 
observable. It is of great importance in determining the spin-splitting in 2Σ, 3Σ, 4Σ states and in 
the Λ doubling of 3Π states. 


