5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #14: Definition of Angular Momenta and |A α M_A. Evaluation of \widehat{H}^{ROT}

We want to be able to set up effective Hamiltonian models for rotation-vibration-electronic structure of diatomic molecules with non-zero electronic angular momenta.

The important terms in $\widehat{\mathbf{H}}$ are

$$\widehat{\mathbf{H}}^{\text{ROT}} = \mathbf{B}(\mathbf{R})\widehat{\mathbf{R}}^{2}$$
$$\widehat{\mathbf{H}}^{\text{SO}} = \sum_{\substack{i \\ \text{electrons}}} \mathbf{a}(\mathbf{r}_{i})\widehat{\ell}_{i}\cdot\widehat{\mathbf{s}}_{i}$$

- * a convenient basis set for evaluating matrix elements of $\hat{\mathbf{H}}^{\text{ROT}}$ and $\hat{\mathbf{H}}^{\text{SO}}$ HUND'S CASE A
- * \hat{A}_z , \hat{A}_{\pm} , and \hat{A}_Z , \hat{A}^{\pm} and \hat{A}^2 operators and $|A \alpha M_A\rangle$ basis functions
- * \mathbf{H}^{eff} and van Vleck Corrections to \mathbf{H}^{eff}
- * Limiting cases where \mathbf{H}^{eff} is approximately diagonal and energy levels are expressed in terms of a pattern-forming rotational quantum number like J(J + 1), N(N + 1), R(R + 1). (Example in next lecture for ${}^{2}\Pi$ and ${}^{2}\Sigma^{+}$ states.)
- * effects of accidental degeneracies <u>perturbations</u>.

Angular Momenta

See H.

Â	nuclear rotation			
$\widehat{\mathbf{L}}$	e⁻ orbital angular momentum			
Ŝ	e⁻ spin			
$\hat{\mathbf{J}}$	total angular momentum	$\vec{\hat{\mathbf{R}}} + \vec{\hat{\mathbf{L}}} + \vec{\hat{\mathbf{S}}}$		
Ñ	angular momentum. exclusive of spin	$\hat{\mathbf{J}} - \hat{\mathbf{S}} = \hat{\mathbf{R}} + \hat{\mathbf{L}}$		
$\mathbf{\hat{J}}_{\mathrm{a}}$	total electron angular momentum	$= \hat{\mathbf{L}} + \hat{\mathbf{S}}$		
Lefebvre-Brion/R. W. Field, pages 72-81.				

<u>All</u> angular momenta can be <u>defined</u> by their commutation rules.

,

Above is a "normal" Commutation Rule which is applicable for all SPACE components of \hat{J} , \hat{L} , \hat{S} , \hat{R} , \widehat{N} , \hat{J}_a and all body components of \widehat{L} , \hat{S} (but not $~\hat{J},\,\widehat{R},\,\widehat{N}$). involve rotation of body

Trivial matter to derive properties of eigenbasis $|A \alpha M_A\rangle$ under operation by \hat{A}^2 , \hat{A}_i , \hat{A}_{\pm} from commutation rule.

This is all you need to know for rotation of diatomic molecules

EXCEPT

<u>Anomalous</u> commutation rule $[\widehat{A}_i, \widehat{A}_j] = -i\hbar \sum_k \epsilon_{ijk} \widehat{A}_k$ applies <u>only</u> to BODY components of \widehat{J} , \widehat{R} , \widehat{N} .

The only difference is

 $\widehat{A}_{\pm} |A\alpha M_{A}\rangle = +\hbar [A(A+1) - \alpha(\alpha \mp 1)]^{1/2} |A \alpha \mp 1 M_{A}\rangle$ $\widehat{A}_{\pm} \text{ acts as a "lowering" operator rather than as raising operator.}$

Now, suppose we want to evaluate what other angular momenta than \widehat{A} do to $|A \alpha M_A\rangle$ basis functions.

We classify these other operators as <u>vectors</u> or <u>scalars</u> with respect to \hat{A} by similar commutation rules. The Wigner-Eckart Theorem will eventually tell us how to evaluate the effect of \hat{B} (some other operator classified by its commutation rule with respect to \hat{A}) on $|A \alpha M_A\rangle$.

A <u>scalar</u> is defined as $[\hat{S}, \hat{A}_i] = [\hat{S}, \hat{A}_{\pm}] = 0$ all i, I and $\hat{S} |A \alpha M_A\rangle = s_A |A \alpha M_A\rangle$.

A <u>normal</u> vector (with respect to \widehat{A}) is defined as

$$\left[\widehat{A}_{i},\widehat{V}_{j}\right] = +i\hbar\sum_{k} \varepsilon_{ijk}V_{k}$$

It happens that

 $\begin{bmatrix} \hat{L}_{i}, \hat{S}_{j} \end{bmatrix} = \begin{bmatrix} \hat{L}_{i}, \hat{S}_{j} \end{bmatrix} = 0$ \hat{L}, \hat{S} operate on different coordinates and are scalar operators with respect to each other

and **all** angular momenta obey normal vector operator commutation rules with respect to \hat{J} for **space** fixed components.

$$[\hat{J}_{I}, \hat{A}_{J}] = i\hbar \sum_{K} \epsilon_{IJK} A_{K}$$
 \hat{J} generates rotations in lab frame

and **all** angular momenta obey anomalous vector operator commutation rules with respect to \hat{R} for **body fixed** components.

$$\left[\widehat{R}_{i},\widehat{A}_{j}\right] = -i\hbar \sum_{k} \varepsilon_{ijk} A_{k}$$

 \hat{R} generates rotations in body frame.

This has convenient effect that $[\hat{J}_i, \hat{L}_j] = [\hat{J}_i, \hat{S}_j] = 0$ because $\hat{J} = \hat{R} + \hat{L} + \hat{S}$. See this in example.

which means that \hat{J} acts as a scalar operator with respect to $|n L \Lambda S \Sigma\rangle$ so we can factor ψ into electronic \otimes vibration \otimes rotation factors!

So we can write a convenient basis set.

Now we can work out matrix elements of $B(R)\hat{R}^2$ in this case(a) basis set.

(Note $\langle v|B(R)|v'\rangle = B_{vv'} \neq 0$) We will see these again when we use J = 0potential energy curve to derive centrifugal distortion effects.

$$\begin{aligned} \widehat{R}^{2} &= \widehat{R} \cdot \widehat{R} = \widehat{R}_{x}^{2} + \widehat{R}_{y}^{2} = (\widehat{J}_{x} - \widehat{L}_{x} - \widehat{S}_{x})^{2} + (\widehat{J}_{y} - \widehat{L}_{y} - \widehat{S}_{y})^{2} \\ &= (J_{x}^{2} + J_{y}^{2}) + (L_{x}^{2} + L_{y}^{2}) + (S_{x}^{2} + S_{y}^{2}) \\ &- 2(J_{x}L_{x} + J_{y}L_{y}) \\ &- 2(J_{x}S_{x} + J_{y}S_{y}) \\ &+ 2(L_{x}S_{x} + L_{y}S_{y}) \end{aligned}$$
No need to be careful of order of operators because body components of \widehat{L} and \widehat{S} commute with each other and with those of \widehat{J} .

Now for some convenient simplifications.

$$\begin{aligned} A_{x}^{2} + A_{y}^{2} &= A^{2} - A_{z}^{2} \\ 2(A_{x}B_{x} + A_{y}B_{y}) &= (A_{+}B_{-} + A_{-}B_{+}) & \text{ confirm for yourself} \end{aligned}$$

Thus $\widehat{R}^2 = (J^2 - J_z^2) + (L^2 - L_z^2) + (S^2 - S_z^2)$ diagonal part plus off-diagonal terms below.

		selection rules	
L–uncoupling term	$-(J_{+}L_{-} + J_{-}L_{+})$	$\Delta \Omega = \Delta \Lambda = \pm 1$	
S–uncoupling term	$-(J_+S + JS_+)$	$\Delta \Omega = \Delta \Sigma = \pm 1$	
Rotation-electronic term	$+(L_+S+LS_+)$	$\Delta \Lambda = -\Delta \Sigma = \pm 1$	$(\Delta \Omega = 0)$

So we are almost ready to set up \mathbf{H}^{eff} . However L is not a well defined quantity.

Non-Lecture: Stark effect in atoms

$$\Delta \ell = \pm 1$$
$$+ \leftrightarrow -$$
$$\Delta M_{\rm L} = \Delta \lambda = 0$$

Electric field (axially symmetric) of atom B mixes L's in atom A

$$\Psi^{A} = \sum_{nL} a_{nL} \left| nL^{A}M_{L}^{A} \right\rangle$$

$$a_{nL} \sim \frac{\frac{\langle nL | \widehat{\mathbf{H}} | n'L' \rangle}{\langle nL | \widehat{\mathbf{H}} | n'L' \rangle}}{\underbrace{E_{nL}^{o} - E_{n'L'}^{o}}}$$

typically 10⁴ cm⁻¹ for different nL states of atom

- * L^A destroyed
- * M^A_L preserved
- * L^2 and L_{\pm} matrix elements not explicitly defined (become perturbation parameter)
- * L^2 and L_{\pm} and L_z selection rules on Λ are preserved!
- * $(L^2 L_z^2) \equiv L_{\perp}^2$ treated as a constant
- * $\langle v, n \ \Lambda \ S \ \Sigma | B \hat{L}_{+} | v', n' \ \Lambda 1 \ S \ \Sigma \rangle \equiv B_{v'v} \beta$ or $\beta_{vv'}$ perturbation parameter.

Matrix elements of $\widehat{\mathbf{H}}^{\text{ROT}} = \mathbf{B}(\mathbf{R})\widehat{\mathbf{R}}^2$

1. Diagonal part (in v, n, Λ , S, Σ , J, Ω , M)

$$B(R) \Big[(J^{2} - J_{z}^{2}) + (L_{\perp}^{2}) + (S^{2} - S_{z}^{2}) \Big]$$

$$B_{v} \Big[J(J+1) - \Omega^{2} + L_{\perp}^{2} + S(S+1) - \Sigma^{2} \Big]$$
include $B_{v} L_{\perp}^{2}$
in $T_{e} + G(v)$

2. Within a ${}^{2S+1}\Lambda$ multiplet state.

Spin-uncoupling term — will destroy Σ , Ω provided that $E_{\Omega}^{\circ} - E_{\Omega \pm 1}^{\circ}$ is small.

$$-\mathbf{B}(\mathbf{R}) \begin{bmatrix} \mathbf{J}_{+} \mathbf{S}_{-} + \mathbf{J}_{-} \mathbf{S}_{+} \end{bmatrix} \\ - \left(\mathbf{B}_{\mathbf{v}} / \hbar^{2} \right) \left\langle \boldsymbol{\Sigma} \pm \mathbf{1} \ \boldsymbol{\Omega} \pm \mathbf{1} \ \mathbf{J} \ \mathbf{S} \middle| \widehat{\mathbf{H}}^{\text{ROT}} \middle| \boldsymbol{\Sigma} \boldsymbol{\Omega} \mathbf{J} \mathbf{S} \right\rangle = -\mathbf{B}_{\mathbf{v}} \begin{bmatrix} \mathbf{J}(\mathbf{J}+1) - (\boldsymbol{\Omega} \pm 1)\boldsymbol{\Omega} \end{bmatrix}^{1/2} \begin{bmatrix} \mathbf{S}(\mathbf{S}+1) - (\boldsymbol{\Sigma} \pm 1)\boldsymbol{\Sigma} \end{bmatrix}^{1/2} \\ \text{notice} \ \boldsymbol{\Omega}' \boldsymbol{\Omega}, \ \boldsymbol{\Sigma}' \boldsymbol{\Sigma} \end{bmatrix}$$

Above matrix element is \approx proportional to J, so at high J $\widehat{\mathbf{H}}^{\text{ROT}}$ will always overwhelm $\Delta E_{\Omega,\Omega\pm 1}^{\circ} \Sigma$ and Ω are destroyed, thus spin "uncouples from body frame".

3. Between two electronic states $\Delta S = 0, \Delta \Sigma = 0, \Delta \Lambda = \Delta \Omega = \pm 1$

"L-Uncoupling" (even though L is already destroyed) destroys Λ and Ω .

$$\begin{split} &- \big(B(R)/\hbar^2\big) \big[\hat{J}_+ \hat{L}_- + \hat{J}_- \hat{L}_+ \big] \\ &- \big[\big\langle v_{\Lambda \pm 1} | B(R) | v_{\Lambda} \big\rangle / \hbar^2 \big] \big\langle n' \ \Lambda \pm 1 \ S \ \Sigma \ J \ \Omega \pm 1 \big| (\hat{J}_+ \hat{L}_- + \hat{J}_- \hat{L}_+) \big| n \ \Lambda \ S \ \Sigma \ J \ \Omega \big\rangle \\ &- B_{v_{\Lambda \pm 1} v_{\Lambda}} \big[J(J+1) - (\Omega \pm 1) \Omega \big]^{1/2} \underbrace{ \big\langle n' \Lambda \pm 1 \big| L_{\pm} \big| n \Lambda \big\rangle / \hbar }_{\beta(n' \Lambda', n \Lambda)} \end{split}$$

 $-B_{v_{\Lambda\pm l}v_{\Lambda}}\beta(n'\Lambda',n\Lambda) \equiv \beta$

an unknown perturbation parameter to be determined directly from spectrum 4. Between two electronic states $\Delta \Omega = 0$ $\Delta \Lambda = -\Delta \Sigma = \pm 1$

+
$$\beta [S(S + 1) - \Sigma (\Sigma \pm 1)]^{1/2}$$

same β as above in #3 for L-uncoupling