MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#14: Definition of Angular Momenta and $\left.\boldsymbol{\|} \boldsymbol{\alpha} \mathrm{M}_{\mathrm{A}}\right\rangle$. Evaluation of $\widehat{\mathbf{H}}^{\text {ROT }}$

We want to be able to set up effective Hamiltonian models for rotation-vibration-electronic structure of diatomic molecules with non-zero electronic angular momenta.

The important terms in $\widehat{\mathbf{H}}$ are

$$
\begin{aligned}
& \widehat{\mathbf{H}}^{\mathrm{ROT}}=\mathrm{B}(\mathrm{R}) \widehat{\mathbf{R}}^{2} \\
& \widehat{\mathbf{H}}^{\text {SO }}=\sum_{\substack{\mathrm{i} \\
\text { electrons }}} \mathrm{a}\left(\mathrm{r}_{\mathrm{i}}\right) \hat{\ell}_{\mathrm{i}} \cdot \hat{\mathrm{~s}}_{\mathrm{i}}
\end{aligned}
$$

* a convenient basis set for evaluating matrix elements of $\widehat{\mathbf{H}}^{\mathrm{Rot}}$ and $\widehat{\mathbf{H}}^{\text {so }}-$ HUND'S CASE A
* $\widehat{\mathbf{A}}_{z}, \widehat{\mathbf{A}}_{ \pm}$, and $\widehat{\mathbf{A}}_{\mathrm{Z}}, \widehat{\mathbf{A}}^{ \pm}$and $\widehat{\mathbf{A}}^{2}$ operators and $\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle$ basis functions
* $\quad \mathbf{H}^{\mathrm{eff}}$ and van Vleck Corrections to $\mathbf{H}^{\mathrm{eff}}$
* Limiting cases where $\mathbf{H}^{\text {eff }}$ is approximately diagonal and energy levels are expressed in terms of a pattern-forming rotational quantum number like $J(J+1), N(N+1), R(R+1)$. (Example in next lecture for ${ }^{2} \Pi$ and ${ }^{2} \Sigma^{+}$states.)
* effects of accidental degeneracies - perturbations.

Angular Momenta

$\widehat{\mathbf{R}}$ nuclear rotation
$\hat{\mathbf{L}} \quad \mathrm{e}^{-}$orbital angular momentum
$\hat{\mathbf{S}} \quad \mathrm{e}^{-}$spin
$\hat{\mathbf{J}} \quad$ total angular momentum $\quad \overrightarrow{\hat{\mathbf{R}}}+\overrightarrow{\hat{\mathbf{L}}}+\overrightarrow{\hat{\mathbf{S}}}$
$\widehat{\mathbf{N}} \quad$ angular momentum. exclusive of spin $\hat{\mathbf{J}}-\hat{\mathbf{S}}=\widehat{\mathbf{R}}+\hat{\mathbf{L}}$
$\hat{\mathbf{J}}_{\mathrm{a}}$ total electron angular momentum $\quad=\hat{\mathbf{L}}+\hat{\mathbf{S}}$
See H. Lefebvre-Brion/R. W. Field, pages 72-81.
All angular momenta can be defined by their commutation rules.

$$
\left.\left[\widehat{\mathrm{A}}_{\mathrm{i}}, \widehat{\mathrm{~A}}_{\mathrm{j}}\right]=+\underset{\mathrm{i}}{ }\right] \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \widehat{\mathrm{~A}}_{\mathrm{k}}
$$
 $$
\varepsilon_{\mathrm{ijk}}
$$

Above is a "normal" Commutation Rule which is applicable for all SPACE components of $\hat{J}, \hat{\mathrm{~L}}, \hat{\mathrm{~S}}, \hat{\mathrm{R}}$, $\widehat{\mathrm{N}}, \hat{\mathrm{J}}_{\mathrm{a}}$ and all body components of $\hat{\mathrm{L}}, \hat{\mathrm{S}}$ (but not $\underset{\substack{\text { involve rotation } \\ \text { of body }}}{\hat{\mathrm{J}}, \widehat{\mathrm{N}}, \widehat{\mathrm{N}}}$).

Trivial matter to derive properties of eigenbasis $\left|A \alpha M_{A}\right\rangle$ under operation by $\widehat{A}^{2}, \widehat{A}_{i}, \widehat{A}_{ \pm}$from commutation rule.

$$
\begin{aligned}
& \widehat{\mathrm{A}}^{2}\left|\mathrm{~A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle=\hbar^{2} \mathrm{~A}(\mathrm{~A}+1)\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle \\
& \widehat{\mathrm{A}}_{z}\left|\mathrm{~A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle=\hbar \alpha\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle \\
& \widehat{\mathrm{A}}_{Z}\left|\mathrm{~A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle=\hbar \mathrm{M}_{\mathrm{A}}\left|\mathrm{~A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle \\
& \widehat{\mathrm{A}}_{ \pm} \equiv \widehat{\mathrm{A}}_{\mathrm{x}} \pm \mathrm{i} \widehat{\mathrm{~A}}_{y} \text { and } \widehat{\mathrm{A}}^{ \pm} \equiv \widehat{\mathrm{A}}_{\mathrm{x}} \pm \mathrm{i} \widehat{\mathrm{~A}}_{Y} \text { (up for upper case) }
\end{aligned}
$$

$\widehat{\mathrm{A}}_{ \pm}\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle=\hbar[\mathrm{A}(\mathrm{A}+1)-\alpha(\alpha \pm 1)]^{1 / 2}\left|\mathrm{~A} \alpha \pm 1 \mathrm{M}_{\mathrm{A}}\right\rangle$
$\widehat{\mathrm{A}}^{ \pm}\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}^{\hat{\mathrm{A}}_{4} \text { "raises" }}\right\rangle=\hbar\left[\mathrm{A}(\mathrm{A}+1)-\mathrm{M}_{\mathrm{A}}\left(\mathrm{M}_{\mathrm{A}} \pm 1\right)\right]^{\hat{\mathrm{A}}^{\prime} \text { "towers" }}{ }^{1 / 2}\left|\mathrm{~A} \alpha \mathrm{M}_{\mathrm{A}} \pm 1\right\rangle$

$$
\widehat{\mathrm{A}}^{+} \text {"raises" } \mathrm{M}_{\mathrm{A}}
$$

This is all you need to know for rotation of diatomic molecules

EXCEPT

Anomalous commutation rule $\left[\widehat{A}_{i}, \widehat{A}_{j}\right]=-i \hbar \sum_{k} \varepsilon_{i j k} \widehat{A}_{k}$ applies only to BODY components of $\hat{J}, \widehat{R}, \widehat{N}$.
The only difference is
$\widehat{\mathrm{A}}_{ \pm}\left|\mathrm{A} \alpha \mathrm{M}_{\mathrm{A}}\right\rangle=+\hbar\left[\mathrm{A}(\mathrm{A}+1)-\alpha\left(\alpha \frac{\downarrow}{\mp} 1\right)\right]^{1 / 2}\left|\mathrm{~A} \alpha \frac{\downarrow}{\mp} 1 \mathrm{M}_{\mathrm{A}}\right\rangle$
$\widehat{\mathrm{A}}_{+}$acts as a "lowering" operator rather than as raising operator.
Now, suppose we want to evaluate what other angular momenta than \widehat{A} do to $\left|A \alpha M_{A}\right\rangle$ basis functions.
We classify these other operators as vectors or scalars with respect to \widehat{A} by similar commutation rules. The Wigner-Eckart Theorem will eventually tell us how to evaluate the effect of $\hat{\mathrm{B}}$ (some other operator classified by its commutation rule with respect to \widehat{A}) on $\left|A \alpha M_{A}\right\rangle$.

A scalar is defined as $\left[\hat{S}, \widehat{A}_{i}\right]=\left[\hat{S}, \widehat{A}_{ \pm}\right]=0$ all i, I and $\hat{S}\left|A \alpha M_{A}\right\rangle=S_{A}\left|A \alpha M_{A}\right\rangle$.
A normal vector (with respect to \widehat{A}) is defined as

$$
\left[\widehat{\mathrm{A}}_{\mathrm{i}}, \widehat{\mathrm{~V}}_{\mathrm{j}}\right]=+\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathrm{~V}_{\mathrm{k}}
$$

It happens that

$$
\left[\hat{\mathrm{L}}_{\mathrm{i}}, \hat{\mathrm{~S}}_{\mathrm{j}}\right]=\left[\hat{\mathrm{L}}_{\mathrm{i}}, \hat{\mathrm{~S}}_{\mathrm{J}}\right]=0 \quad \begin{aligned}
& \hat{\mathrm{L}}, \hat{\mathrm{~S}} \text { operate on different coordinates and are } \\
& \text { scalar operators with respect to each other }
\end{aligned}
$$

and all angular momenta obey normal vector operator commutation rules with respect to $\hat{\mathbf{J}}$ for space fixed components.

$$
\left[\hat{\mathrm{J}}_{\mathrm{I}}, \hat{\mathrm{~A}}_{\mathrm{J}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{IJK}} \mathrm{~A}_{\mathrm{K}} \quad \hat{\mathrm{~J}} \text { generates rotations in lab frame }
$$

and all angular momenta obey anomalous vector operator commutation rules with respect to \hat{R} for body fixed components.

$$
\left[\widehat{\mathrm{R}}_{\mathrm{i}}, \widehat{\mathrm{~A}}_{\mathrm{j}}\right]=-\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathrm{~A}_{\mathrm{k}} \quad \widehat{\mathrm{R}} \text { generates rotations in body frame. }
$$

This has convenient effect that $\left[\hat{J}_{i}, \hat{L}_{j}\right]=\left[\hat{J}_{i}, \hat{S}_{j}\right]=0$ because $\hat{J}=\hat{R}+\hat{L}+\hat{S}$. See this in example.
which means that $\hat{\mathbf{J}}$ acts as a scalar operator with respect to $|\mathrm{n} \mathrm{L} \Lambda S \Sigma\rangle$ so we can factor ψ into electronic \otimes vibration \otimes rotation factors!

So we can write a convenient basis set.

Case (a)
fully "uncoupled" basis set in body very convenient for body fixed matrix elements

Now we can work out matrix elements of $B(R) \widehat{R}^{2}$ in this case(a) basis set.

to cancel the \hbar^{2} from all angular momentum matrix elements
(Note $\langle v| B(R)\left|v^{\prime}\right\rangle=B_{v v^{\prime}} \neq 0$)
We will see these again when we use $\mathrm{J}=0$ potential energy curve to derive centrifugal distortion effects.

$$
\begin{aligned}
\hat{\mathrm{R}}^{2} & =\hat{\mathrm{R}} \cdot \hat{\mathrm{R}}=\hat{R}_{x}^{2}+\hat{\mathrm{R}}_{y}^{2}=\left(\hat{\mathrm{J}}_{x}-\hat{\mathrm{L}}_{x}-\hat{S}_{x}\right)^{2}+\left(\hat{\mathrm{J}}_{y}-\hat{\mathrm{L}}_{y}-\hat{S}_{y}\right)^{2} \\
& =\left(\mathrm{J}_{x}^{2}+\mathrm{J}_{y}^{2}\right)+\left(\mathrm{L}_{x}^{2}+\mathrm{L}_{y}^{2}\right)+\left(\mathrm{S}_{x}^{2}+\mathrm{S}_{y}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -2\left(J_{x} L_{x}+J_{y} L_{y}\right) \\
& -2\left(J_{x} S_{x}+J_{y} S_{y}\right)
\end{aligned}
$$

No need to be careful of order of

$$
\left.+2\left(L_{x} S_{x}+L_{y} S_{y}\right)\right]
$$ operators because body components of $\hat{\mathrm{L}}$ and $\hat{\mathrm{S}}$ commute with each other and with those of $\hat{\mathbf{J}}$.

Now for some convenient simplifications.
$A_{x}^{2}+A_{y}^{2}=A^{2}-A_{z}^{2}$
$2\left(A_{x} B_{x}+A_{y} B_{y}\right)=\left(A_{+} B_{-}+A_{-} B_{+}\right) \quad$ confirm for yourself
Thus $\quad \hat{R}^{2}=\left(J^{2}-J_{z}^{2}\right)+\left(L^{2}-L_{z}^{2}\right)+\left(S^{2}-S_{z}^{2}\right) \quad$ diagonal part plus off-diagonal terms below.

	selection rules	
L-uncoupling term	$-\left(\mathrm{J}_{+} \mathrm{L}_{-}+\mathrm{J}_{-} \mathrm{L}_{+}\right)$	$\Delta \Omega=\Delta \Lambda= \pm 1$
S-uncoupling term	$-\left(\mathrm{J}_{+} \mathrm{S}_{-}+\mathrm{J}_{-} \mathrm{S}_{+}\right)$	$\Delta \Omega=\Delta \Sigma= \pm 1$
Rotation-electronic term	$+\left(\mathrm{L}_{+} \mathrm{S}_{-}+\mathrm{L}_{-} \mathrm{S}_{+}\right)$	$\Delta \Lambda=-\Delta \Sigma= \pm 1 \quad(\Delta \Omega=0)$

So we are almost ready to set up $\mathbf{H}^{\text {eff }}$. However L is not a well defined quantity.
Non-Lecture: Stark effect in atoms

$$
\begin{aligned}
& \Delta \ell= \pm 1 \\
&+\leftrightarrow- \\
& \Delta \mathrm{M}_{\mathrm{L}}=\Delta \lambda=0
\end{aligned}
$$

Electric field (axially symmetric) of atom B mixes L's in atom A

$$
\psi^{\mathrm{A}}=\sum_{\mathrm{nL}} \mathrm{a}_{\mathrm{nL}}\left|\mathrm{~nL}^{\mathrm{A}} \mathrm{M}_{\mathrm{L}}^{\mathrm{A}}\right\rangle
$$

* L^{A} destroyed
* $\quad \mathrm{M}_{\mathrm{L}}^{\mathrm{A}}$ preserved
* L^{2} and $\mathrm{L}_{ \pm}$matrix elements not explicitly defined (become perturbation parameter)
* L^{2} and $\mathrm{L}_{ \pm}$and L_{z} selection rules on Λ are preserved!
* $\left(\mathrm{L}^{2}-\mathrm{L}_{\mathrm{z}}^{2}\right) \equiv \mathrm{L}_{\perp}^{2} \quad$ treated as a constant
* $\left\langle\mathrm{v}, \mathrm{n} \Lambda \mathrm{S} \sum\right| B \hat{\mathrm{~L}}_{+}\left|\mathrm{v}^{\prime}, \mathrm{n}^{\prime} \Lambda-1 \mathrm{~S} \Sigma\right\rangle \equiv \mathrm{B}_{\mathrm{v}^{\prime} \mathrm{v}} \beta$ or β_{vv} perturbation parameter.

Matrix elements of $\widehat{\mathbf{H}}^{\text {Rot }}=B(R) \widehat{\mathrm{R}}^{2}$

1. Diagonal part (in v, n, $\Lambda, \mathrm{S}, \Sigma, \mathrm{J}, \Omega, \mathrm{M})$

$$
\begin{aligned}
& \mathrm{B}(\mathrm{R})\left[\left(\mathrm{J}^{2}-\mathrm{J}_{\mathrm{z}}^{2}\right)+\left(\mathrm{L}_{\perp}^{2}\right)+\left(\mathrm{S}^{2}-\mathrm{S}_{\mathrm{z}}^{2}\right)\right] \\
& \mathrm{B}_{\mathrm{v}}\left[\mathrm{~J}(\mathrm{~J}+1)-\Omega^{2}+\mathrm{L}_{\perp}^{2}+\mathrm{S}(\mathrm{~S}+1)-\Sigma^{2}\right] \\
& \sqrt[\begin{array}{l}
\text { include } \mathrm{B}_{\mathrm{v}} \mathrm{~L}_{\perp}^{2} \\
\text { in } \mathrm{T}_{\mathrm{e}}+\mathrm{G}(\mathrm{v})
\end{array}]{ }
\end{aligned}
$$

2. Within a ${ }^{2 S+1} \Lambda$ multiplet state.

Spin-uncoupling term - will destroy Σ, Ω provided that $\mathrm{E}_{\Omega}^{\mathrm{o}}-\mathrm{E}_{\Omega \pm 1}^{\mathrm{o}}$ is small.

$$
\begin{aligned}
& -\mathrm{B}(\mathrm{R})\left[\mathrm{J}_{+} \mathrm{S}_{-}+\mathrm{J}_{-} \mathrm{S}_{+}\right] \\
& -\left(\mathrm{B}_{\mathrm{v}} / \hbar^{2}\right)\left\langle\sum \pm 1 \Omega \pm 1 \mathrm{~J} \mathrm{~S}\right| \widehat{\mathbf{H}}^{\mathrm{ROT}}\left|\sum \Omega \mathrm{JS}\right\rangle=-\mathrm{B}_{\mathrm{v}}[\mathrm{~J}(\mathrm{~J}+1)-(\Omega \pm 1) \Omega]^{1 / 2}\left[\mathrm{~S}(\mathrm{~S}+1)-\left(\sum \pm 1\right) \Sigma\right]^{1 / 2}
\end{aligned}
$$ notice $\Omega^{\prime} \Omega, \Sigma^{\prime} \Sigma$

Above matrix element is \approx proportional to J, so at high $J \widehat{\mathbf{H}}^{\text {ROT }}$ will always overwhelm $\Delta \mathrm{E}_{\Omega, \Omega \pm 1}^{0} \sum$ and Ω are destroyed, thus spin "uncouples from body frame".
3. Between two electronic states $\Delta \mathrm{S}=0, \Delta \Sigma=0, \Delta \Lambda=\Delta \Omega= \pm 1$
"L-Uncoupling" (even though L is already destroyed) destroys Λ and Ω.

$$
\begin{aligned}
& -\left(\mathrm{B}(\mathrm{R}) / \hbar^{2}\right)\left[\hat{\mathrm{J}}_{+} \hat{\mathrm{L}}_{-}+\hat{\mathrm{J}}_{-} \hat{\mathrm{L}}_{+}\right] \\
& -\left[\left\langle\mathrm{v}_{\Lambda \pm 1}\right| \mathrm{B}(\mathrm{R})\left|\mathrm{v}_{\Lambda}\right\rangle / \hbar^{2}\right]\left\langle\mathrm{n}^{\prime} \Lambda \pm 1 \mathrm{~S} \sum \mathrm{~J} \Omega \pm 1\right|\left(\hat{\mathrm{J}}_{+} \hat{\mathrm{L}}_{-}+\hat{\mathrm{J}}_{-} \hat{\mathrm{L}}_{+}\right)\left|\mathrm{n} \Lambda \mathrm{~S} \sum \mathrm{~J} \Omega\right\rangle \\
& -\mathrm{B}_{\mathrm{v}_{\Lambda \pm 1} \mathrm{v}_{\Lambda}}[\mathrm{J}(\mathrm{~J}+1)-(\Omega \pm 1) \Omega]^{1 / 2} \underbrace{\left\langle\mathrm{n}^{\prime} \Lambda \pm 1\right| \mathrm{L}_{ \pm}|\mathrm{n} \Lambda\rangle / \hbar}_{\beta\left(\mathrm{n}^{\prime} \Lambda^{\prime}, \mathrm{n} \Lambda\right)}
\end{aligned}
$$

$$
-B_{v_{\Lambda \pm v_{\Lambda}}} \beta\left(n^{\prime} \Lambda^{\prime}, n \Lambda\right) \equiv \beta
$$

an unknown perturbation parameter to be determined directly from spectrum
4. Between two electronic states $\Delta \Omega=0 \quad \Delta \Lambda=-\Delta \Sigma= \pm 1$

$$
+\beta\left[\begin{array}{c}
\beta(\mathrm{S}+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \\
\text { same } \beta \text { as above in \#3 for } L \text {-uncoupling }
\end{array}\right.
$$

