5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Fall, 2008

<u>Lecture #13</u>: Laser Schemes for Rotational Assignment First Lines for Ω^{\bullet} , $\Omega^{\bullet \bullet}$ Assignments

Last Time:	Lagerqvist Strips – use of known $\Delta_2 F(J)$ for either upper or lower state.
	Simultaneous analysis of two vibrationally linked bands: search for a C.D. that appears once in each band correct numbering of R relative to P branch and correct absolute numbering
	Computer automated term value method — valuable when there is no pattern. Based on term value redundancies from two linked bands and supplemented by intensity regularity.
T 1	Problem is that combination differences are "lost in crowd"
<u>Today</u> :	Patterns revealed by laser spectroscopy
	Fluorescence Excitation Spectroscopy = Laser Induced Fluorescence (LIF)
	Dispersed Fluorescence (DF)
	Wavelength Selective Fluorescence Excitation
	(Also lifetime-selected LIF)
	OODR and SEP
	Introduction to spectra for $\Lambda \neq 0$ and/or $S \neq 0$ states
	Diagrams of allowed transitions
	First lines as diagnostics
	Unlinked sub-manifolds — need a model
	Pattern-forming rotational quantum numbers
Next time:	Read * JTH, pp. 1-9 (at least)
	* Symbols for Spectroscopy
	* Report of sub-committee f
	* nomenclature
	* Rotation and Angular Momenta II
	* Energy level Structure of ${}^{2}\Pi$ and ${}^{2}\Sigma^{+}$ states and JTH pages 9-13

What advantages might a laser bring to the assignment of an electronic band system?

1. <u>Fluorescence Excitation Spectrum</u> (known as LIF)

Scan laser, recording total fluorescence resulting as laser frequency is tuned.

Obtain spectrum essentially identical to an absorption spectrum.

* A few exceptions when "quantum yield" of detected fluorescence is not identical for each line in spectrum.

Reasons? Predissociation (no fluorescence) fluorescence branching ratios perturbations lifetime differences, collisional quenching, self-absorption, and transport out of field of view.

2. <u>Dispersed Fluorescence Spectrum (DF)</u>

Tune laser onto single $e'v'J' \leftarrow e''v''J''$ line and record spectrum of resultant fluorescence.

See nothing but combination differences!

Now, if we do not know either J' or B", we do know that $\Delta_2 F''(J)$'s change in steps of 4B", so if we view fluorescence excited via two consecutive lines in a suspected branch, we see

$$\Delta_2 F''(J') - \Delta_2 F''(J'-1) = 4B''$$

Once B" is known, we know J' and all is settled. [What about vibrational assignments?]

This works provided that:

* precision for $\Delta_2 F''(J)$ is better than $\approx 2B''$ (better than 0.5 J-units)

* J is not so large that centrifugal distortion effects are important.

- There are not many isotopic species present. There are not many superimposed vibrational sequences. There are not more complicated band systems with $S \neq 0$ present.
- If there are many unrelated lines clustered together, the resultant dispersed fluorescence spectra will bear no systematic relationships to each other.
- 3. <u>Wavelength selective fluorescence excitation spectra</u>

requires tunable laser and monochromator.

Expt. 2? See only the single group of high-J P-lines.

Now we are ready for more complexity. We have been ignoring the possibility that molecules might have electronic angular momenta in addition to nuclear rotation.

- Λ : projection of remnant of atomic L onto body fixed z-axis
- S: total spin
- Σ projection of S on z-axis

 $\Omega \equiv \Lambda + \sum \underline{OR}$ projection of J on z-axis.

Convenient diagrams for summarizing levels and transitions.

S = 0 ¹ Λ states

$$\Omega = \Lambda$$
 (because $S = \Sigma = 0$)

 $J \ge \Omega$ (because J can never be smaller than its projection on any axis)

When $\Omega \neq 0$, have double parity ($\Omega > 0$ and $\Omega < 0$) called Ω -doubling or Λ -doubling (parity is σ_v symmetry of $2^{-1/2}[|\Omega\rangle \pm |-\Omega\rangle]$). Can have $\perp (\Delta\Omega = \Delta\Lambda = \pm 1)$ and $\parallel (\Delta\Omega = \Delta\Lambda = 0)$ type transitions. Always + \leftrightarrow – parity selection rule. (e,f symmetry?)

Note that first lines in each branch are determined by Ω' and/or Ω'' :

* R(0) implies $\Omega'' = 0$ and $\Omega' \le 1$

* Q(1) implies Ω'' or Ω' is double parity because there are no Q branches for $\sum -\sum$ transitions

absence of Q(0) implies nothing because J' = 0 - J'' = 0 is always forbidden * P(2) implies $\Omega' = 1$. Absence of P(1) implies $\Omega' \neq 0$.

Note that upper levels of Q branch lines are only sampled via Q lines!

No linkage between $({}^{1}\Pi_{+}, \text{ odd-J } {}^{1}\Sigma^{+})$ and $({}^{1}\Pi_{-}, \text{ even-J } {}^{1}\Sigma^{+})$. Must have a model for either ${}^{1}\Sigma^{+}$ or ${}^{1}\Pi$ that links the two groups of levels! Alternatively, could have microwave spectrum for ${}^{1}\Sigma^{+}$ state which links the two groups.

 $^{1}\Delta - ^{1}\Pi$

First lines $R_{+-}(1), R_{-+}(1) \Rightarrow \Omega'' = 1, \Omega' \le 2$ $Q_{+-}(2), Q_{-+}(2) \Rightarrow \Omega' > 1$ (absence of Q(1) line) $P_{+-}(3), P_{-+}(3) \Rightarrow \Omega' = 2$

Usually can't resolve +- and -+ line pairs at low J.

No linkage between $({}^{1}\Delta_{+}, {}^{1}\prod_{-})$ and $({}^{1}\Delta_{-}, {}^{1}\prod_{+})$. Model required again!

Work out situation for ${}^{1}\Pi - {}^{1}\Pi$ yourselves.

1st lines
$$R(1)$$

 $Q(1)$
 $P(2)$
 $Q(1) = \frac{1}{2} \int \frac{1}{2} dt = \frac{$

again absence of linkage between $(^{1}\Pi_{+}, ^{1}\Pi_{-})$ and $(^{1}\Pi_{-}, ^{1}\Pi_{+})$.

N' - J'' is difference between pattern-forming quantum numbers. Use this to name branches.

Always looking for pattern-forming rotational quantum number that gives ${}^{1}\Sigma^{+}$ -like level pattern! For $S \neq 0$ the pattern of branches, fine structure, and first lines is much more complicated than for S = 0. Need to compute level positions and relative intensities. Next time: \mathbf{H}^{ROT} and \mathbf{H}^{SO} .