MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#13: Laser Schemes for Rotational Assignment First Lines for $\boldsymbol{\Omega}^{\boldsymbol{\prime}}, \boldsymbol{\Omega}^{\boldsymbol{\prime}}$ Assignments

Last Time: Lagerqvist Strips - use of known $\Delta_{2} \mathrm{~F}(\mathrm{~J})$ for either upper or lower state.
Simultaneous analysis of two vibrationally linked bands:
search for a C.D. that appears once in each band
correct numbering of R relative to P branch and correct absolute numbering
Computer automated term value method - valuable when there is no pattern. Based on term value redundancies from two linked bands and supplemented by intensity regularity.

Problem is that combination differences are "lost in crowd"
Today: Patterns revealed by laser spectroscopy
Fluorescence Excitation Spectroscopy = Laser Induced Fluorescence (LIF)
Dispersed Fluorescence (DF)
Wavelength Selective Fluorescence Excitation
(Also lifetime-selected LIF)
OODR and SEP

Introduction to spectra for $\Lambda \neq 0$ and/or $S \neq 0$ states
Diagrams of allowed transitions
First lines as diagnostics
Unlinked sub-manifolds - need a model
Pattern-forming rotational quantum numbers
Next time: Read * JTH, pp. 1-9 (at least)

* Symbols for Spectroscopy
* Report of sub-committee f
* nomenclature
* Rotation and Angular Momenta II
* Energy level Structure of ${ }^{2} \Pi$ and ${ }^{2} \Sigma^{+}$states and JTH pages 9-13

What advantages might a laser bring to the assignment of an electronic band system?

1. Fluorescence Excitation Spectrum (known as LIF)

Scan laser, recording total fluorescence resulting as laser frequency is tuned.
Obtain spectrum essentially identical to an absorption spectrum.

* A few exceptions when "quantum yield" of detected fluorescence is not identical for each line in spectrum.

Reasons? Predissociation (no fluorescence)
fluorescence branching ratios
perturbations
lifetime differences, collisional quenching, self-absorption, and transport out of field of view.

2. Dispersed Fluorescence Spectrum (DF)

Tune laser onto single $e^{\prime} v^{\prime} J^{\prime} \leftarrow e^{\prime \prime} v^{\prime \prime} J^{\prime \prime}$ line and record spectrum of resultant fluorescence.
See nothing but combination differences!

Now, if we do not know either J^{\prime} or $\mathrm{B}^{\prime \prime}$, we do know that $\Delta_{2} \mathrm{~F}^{\prime \prime}(\mathrm{J})$'s change in steps of $4 \mathrm{~B}^{\prime \prime}$, so if we view fluorescence excited via two consecutive lines in a suspected branch, we see

$$
\Delta_{2} \mathrm{~F}^{\prime \prime}\left(\mathrm{J}^{\prime}\right)-\Delta_{2} \mathrm{~F}^{\prime \prime}\left(\mathrm{J}^{\prime}-1\right)=4 \mathrm{~B}^{\prime \prime}
$$

Once $\mathrm{B}^{\prime \prime}$ is known, we know J^{\prime} and all is settled. [What about vibrational assignments?]
This works provided that:

* precision for $\Delta_{2} \mathrm{~F}^{\prime \prime}(\mathrm{J})$ is better than $\approx 2 \mathrm{~B}^{\prime \prime}$ (better than 0.5 J -units)
* J is not so large that centrifugal distortion effects are important.
* There are not many isotopic species present.

There are not many superimposed vibrational sequences.
There are not more complicated band systems with $S \neq 0$ present.
If there are many unrelated lines clustered together, the resultant dispersed fluorescence spectra will bear no systematic relationships to each other.

3. Wavelength selective fluorescence excitation spectra

requires tunable laser and monochromator.

Fortrat Parabola

What happens in Expt. 1? See two groups of lines - the high-J lines $\{R(J-3), \ldots R(J)\}$ linked to $\{\mathrm{P}(\mathrm{J}-1), \ldots \mathrm{P}(\mathrm{J}+2)\}$ and some low-J lines linked to the other branch of the Fortrat parabola.

Expt. 2? See only the single group of high-J P-lines.

Now we are ready for more complexity. We have been ignoring the possibility that molecules might have electronic angular momenta in addition to nuclear rotation.
$\Lambda: \quad$ projection of remnant of atomic L onto body fixed z -axis
S: total spin
$\Sigma \quad$ projection of S on z-axis

Convenient diagrams for summarizing levels and transitions.
$\mathrm{S}=0 \quad{ }^{1} \Lambda$ states
$\Omega=\Lambda$ (because $S=\Sigma=0$)
$\mathrm{J} \geq \Omega \quad$ (because J can never be smaller than its projection on any axis)
When $\Omega \neq 0$, have double parity ($\Omega>0$ and $\Omega<0$) called Ω-doubling or Λ-doubling (parity is σ_{v} symmetry of $2^{-1 / 2}[|\Omega\rangle \pm|-\Omega\rangle]$).
Can have $\perp(\Delta \Omega=\Delta \Lambda= \pm 1)$ and $\|(\Delta \Omega=\Delta \Lambda=0)$ type transitions.
Always $+\leftrightarrow-$ parity selection rule. (e,f symmetry?)
${ }^{1} \Pi-{ }^{1} \Sigma^{+}$

Note that first lines in each branch are determined by Ω^{\prime} and/or $\Omega^{\prime \prime}$:

* $\mathrm{R}(0)$ implies $\Omega^{\prime \prime}=0$ and $\Omega^{\prime} \leq 1$
* $\mathrm{Q}(1)$ implies $\Omega^{\prime \prime}$ or Ω^{\prime} is double parity because there are no Q branches for $\Sigma-\sum$ transitions
absence of $\mathrm{Q}(0)$ implies nothing because $\mathrm{J}^{\prime}=0-\mathrm{J}^{\prime \prime}=0$ is always forbidden
* $\mathrm{P}(2)$ implies $\Omega^{\prime}=1$. Absence of $\mathrm{P}(1)$ implies $\Omega^{\prime} \neq 0$.

Note that upper levels of Q branch lines are only sampled via Q lines!
No linkage between (${ }^{1} \Pi_{+}$, odd-J ${ }^{1} \Sigma^{+}$) and (${ }^{1} \Pi_{-}$, even- ${ }^{1} \Sigma^{+}$). Must have a model for either ${ }^{1} \Sigma^{+}$or ${ }^{1} \Pi$ that links the two groups of levels! Alternatively, could have microwave spectrum for ${ }^{1} \Sigma^{+}$state which links the two groups.
${ }^{1} \Delta-{ }^{1} \Pi$

First lines

$$
\begin{aligned}
& \mathrm{R}_{+-}(1), \mathrm{R}_{-+}(1) \Rightarrow \Omega^{\prime \prime}=1, \Omega^{\prime} \leq 2 \\
& \mathrm{Q}_{+-}(2), \mathrm{Q}_{-+}(2) \Rightarrow \Omega^{\prime}>1(\text { absence of } \mathrm{Q}(1) \text { line }) \\
& \mathrm{P}_{+}(3), \mathrm{P}_{-+}(3) \Rightarrow \Omega^{\prime}=2
\end{aligned}
$$

Usually can't resolve +- and -+ line pairs at low J.
No linkage between $\left({ }^{1} \Delta_{+},{ }^{1} \Pi_{-}\right)$and $\left({ }^{1} \Delta_{-},{ }^{1} \Pi_{+}\right)$. Model required again!
Work out situation for ${ }^{1} \Pi-{ }^{1} \Pi$ yourselves.
1st lines $\quad R(1)$
Q(1)
$\mathrm{P}(2)$
again absence of linkage between $\left({ }^{1} \Pi_{+},{ }^{1} \Pi_{-}\right)$and $\left({ }^{1} \Pi_{-},{ }^{1} \Pi_{+}\right)$.
One example of an $\mathrm{S}=1$ band system.

$\mathrm{N}^{\prime}-\mathrm{J}^{\prime \prime}$ is difference between pattern-forming quantum numbers. Use this to name branches.

Always looking for pattern-forming rotational quantum number that gives ${ }^{1} \Sigma^{+}$-like level pattern! For $S \neq 0$ the pattern of branches, fine structure, and first lines is much more complicated than for $S=0$. Need to compute level positions and relative intensities. Next time: $\mathbf{H}^{\text {ROT }}$ and $\mathbf{H}^{\text {SO }}$.

