5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #11: Pictures of Spectra and Notation

<u>Last Time</u> Selection, propensity and intensity rules	
$\vec{M}(R)_{if}$ $\boldsymbol{\alpha}_{Sb}(\theta,\phi)$	
absolute rotational linestrengths $S_{J_i J_f}^{\Omega_i \Omega_f}$	
rotation $permanent \\ dipole P \propto \mu^2 g_i \text{ or } S $ Sum rule	
vibration $\frac{dM}{dQ}$ $P \propto \left(\frac{dM}{dQ}\right)^2 vg_i$ typical form inversal ang factor \rightarrow matrix	ular
electronic $M_{if} \langle v_i v_f \rangle$ $P \propto M^2 q_{v_i v_f} g_i$ sum to 1 or total degener	

TODAY:

Patterns in spectra Typical constants How to assign spectra - problems and tricks Notation

PURE ROTATION

 μ -wave sources limit range of J sampled (more difficult to assign than expected) superposition of lines from vastly different energy regions, isotopomers population effects. How to tell up from down. \leftarrow Think about this!

VIBRATION-ROTATION

J range limited by T, not by radiation source. P and R branch structure - open, no heads, zero gap (easy to assign) PQR notation hot bands and isotopomers

ELECTRONIC

Band heads due to large $|\Delta B|$

blue vs. red degraded \rightarrow sign of ΔB (hard to assign because of overlapping lines)

$$J_{\text{Head}}$$

vibrational Sequences vs. Progressions Qualitative Franck-Condon Principle

Universal notation for *all* molecular spectroscopy.

Upper level denoted by '	always stated first
Lower level denoted by "	always stated second

Denote whether transition is absorption or emission by direction of arrow. Always state upper level first.

PURE ROTATION SPECTRA – μ -wave (e.g. heteronuclear diatomic)

requires permanent dipole moment

v 10-300 GHz [$\bar{v} = v/c$ $c = 3 \times 10^{10} \text{ cm/s}$]

 λ 3cm – 1mm "cm-wave" and "mm-wave" regions

for ${}^{1}\Sigma^{+}\Delta J = \pm 1$ only because $\Omega = 0$. recall $S_{J_{i}J_{f}}^{\Omega\Omega}$

$$F_{v}(J) = B_{v} J(J+1) - D_{v} J^{2}(J+1)^{2} \qquad J \text{ of higher level} \qquad D \approx \frac{4B^{3}}{\omega^{2}} \sim 10^{-6}B$$

$$J \leftarrow J - 1 \qquad F_{v}(J) - F_{v}(J-1) = 2JB_{v} - 4J^{3}D_{v} \qquad D \approx \frac{4B^{3}}{\omega^{2}} \sim 10^{-6}B$$
Typical B-value $\approx 1 \text{ cm}^{-1} = 30 \text{ GHz}$

$$B: Cs_{2} \qquad 0.01 \text{ cm}^{-1} \quad I_{2} \qquad 0.04 \text{ cm}^{-1} \qquad H_{2} \qquad 61 \text{ cm}^{-1}$$

$$B(\text{ cm}^{-1}) = \frac{1}{R^{2}(\text{ cm})} \frac{1}{\mu(\text{ amu})} 1.685763 \times 10^{-15} \qquad \mu = \frac{m_{1}m_{2}}{m_{1} + m_{2}}$$
Microwave Spectrum: "Klystron", "Backward Wave Oscillator" (BWO) typical tuning range < 1/2 octave $\pm \sim 25\%$

$$8 - 12 \text{ GHz}$$

$$12 - 18 \qquad 18 - 24 \qquad 24 + 40$$

not DC to 100 GHz. See only a small portion of pure rotation spectrum for any given Exptl. setup.

Almost regular pattern of lines separated by 2B (-4J³D makes lines draw closer together at high J)

NON-LECTURE

How to assign? Can't see entire pattern. $\Delta v = 2BJ$

Can usually guess $R_{\rm e}$ to ${\sim}10\%$ so $B_{\rm e}$ to ${\sim}20\%$

given a line at 15GHz, probably $J = 2 \leftarrow 1$ next line would be at 3/2 15 = 22.5 GHz

if it was $1 \leftarrow 0$, next line would be at $2/1 \ 15 = 30 \text{ GHz}$

if it was $3 \leftarrow 2$, next line would be at $4/3 \ 15 = 20 \text{ GHz}$

So assignment is based on a guess followed by at least one confirming measurement.

Non- $^{1}\Sigma^{+}$ states and polyatomic molecules: other kinds of transitions possible

(always $M_{z,ii} \Delta \Omega = 0$) for linear polyatomics and symmetric tops

No electric dipole? e.g. $O_2 = X^3 \sum_{g}^{-} \Delta \Sigma = \Delta \Omega \neq 0$ fine structure transitions due to <u>magnetic dipole</u>.

VIBRATION-ROTATION spectra — IR 100 - 5000 cm⁻¹ requires $dM_{z,ii}/dQ \neq 0$

for ${}^{1}\Sigma^{+}\Delta J = \pm 1$ only $\Delta v = \pm 1$ strongest

$$\begin{split} G(v) &= \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2 + \dots \\ F_v(J) &= B_v J(J + 1) - D_v J^2 (J + 1)^2 \\ B_v &= B_e - \alpha_e(v + 1/2) \\ \text{NOTE: Signs. Because almost always see } \omega_e x_e, D_v, \alpha_e > 0 \text{ as defined above!} \end{split}$$

typical $\omega_e \approx 1000 \text{ cm}^{-1}$ Cs₂ 42cm⁻¹, I₂ 215 cm⁻¹, H₂ 4400 cm⁻¹

Lines spaced by $\approx 2B$ with "zero-gap" of 4B where Q(0) would be.

R branch
$$\Delta J = +1$$
 $R(J'') = \Delta G + \Delta F = \Delta G + \Delta BJ''^2 + (2B' + \Delta B)J'' + 2B'$
P branch $\Delta J = -1$ $P(J'') = \Delta G + \Delta F = \Delta G + \Delta BJ''^2 + (2B' + \Delta B)J'' + 2B'$
 $-\Delta v\alpha_e \text{ small negative}$ $\approx 2B' \text{ large}$
 $= 2B' \text{ large}$
 $= 2B' \text{ large}$
 $= 1 \text{ linear term}$
notation $\Delta G = G(v_{>}) - G(v_{<}) \equiv \Delta G\left(\frac{v_{>} + v_{<}}{2}\right)$
 $\Delta G(1/2) = \omega_e - 2\omega_e x_e = v$

lines in R branch gradually pull closer together, branch goes to blue lines in P branch gradually pull further apart, branch goes to red

Double Humped Appearance of Vibration-Rotation band

Finer details:

Hot Bands: $1 \leftarrow 0$ looks like $2 \leftarrow 1$ except

- 1. $2 \leftarrow 1$ is shifted $2\omega_e x_e$ to red
- 2. "constant" difference between rotational lines is smaller by $2\alpha_e$ (< ~1%)
- 3. identical quadratic term $\Delta B = \alpha_e$
- 4. intensity down by $e^{-\omega_e/kT}$

Isotopomer Bands $B_v \propto \mu^{-1}$ $\omega_e \propto \mu^{-1/2}$ intensity depends on isotopic abundance, NOT on T

Overtone Bands

- 1. $2 \leftarrow 0 \text{ near } 2\omega_e$
- 2. linear term $(2B' \pm \Delta B)$ in rotational branches almost same as for $\Delta v = +1$ band.
- 3. quadratic term $2 \times$ as large \rightarrow can sometimes see bandheads for high overtone bands
- 4. intensity weaker than $\Delta v = 1$ band, usually by 10 to $100 \times$

ROTATIONAL ASSIGNMENT

trivial because of	* presence of zero gap * no overlap of band with itself	pat ^{ter} n r ^{ec} og ^{nit} ion triv ^{ia} l	
--------------------	--	---	--

Electronic Spectra

 ${}^{1}\Sigma^{+} - {}^{1}\Sigma^{+}$ for now — deal with non- ${}^{1}\Sigma^{+}$ soon.

No restriction on types of molecules. [Symmetry restrictions, $g \leftrightarrow u$, $\Sigma^+ \leftrightarrow \Sigma^+$, $\Delta S = 0$, $\Delta \Lambda = \Delta \Omega = 0, \pm 1$]

ν	$10,000 \text{ cm}^{-1} \rightarrow 100,000 \text{ cm}^{-1}$	VIS & UV & VUV
		(not X-ray) because not sharp lines

Rotational Structure of one vibrational band of electronic transition: just like VIBRATION-ROTATION band but more can happen.

$$\Delta J = \pm 1 \text{ only}$$

$$\downarrow \text{Band origin } \Delta T_e + G'(v') - G''(v'')$$

$$R(J) = v_0 + \Delta B J^2 + (2B' + \Delta B)J + 2B' \qquad \text{starts toward blue}$$

$$P(J) = v_0 + \Delta B J^2 - (2B' - \Delta B)J \qquad \text{starts toward red}$$

Fortrat parabola — ambiguity about assignment

 $Q(J) = v_0 + \Delta B J^2 + \Delta B J \text{ (not for } {}^1\Sigma^+ - {}^1\Sigma^+\text{)} \qquad \text{usually compact}$

 ΔB can be large and have either sign because $B'-B''\neq -\alpha_{_{\rm e}}$

Heads form!

By inspection, can tell sign of $\Delta B \Rightarrow$ bonding nature of excited state.

At what J does head form? How far is head from band origin?

$$v = \frac{dP(J)}{dJ} = 2\Delta BJ - (B' + B'')$$

Extremum
$$J_{HEAD}^{P} = \frac{B' + B''}{2\Delta B} \quad \text{if } \Delta B > 0, \text{ then } J_{HEAD}^{P} \sim \frac{\overline{B}}{\Delta B}$$
$$J_{HEAD}^{R} = -\frac{(3B' + B'')}{2\Delta B} \quad \text{if } \Delta B < 0, \text{ then } J_{HEAD}^{R} \sim -\frac{\overline{B}}{\Delta B}$$
$$\left\{ P(J_{HEAD}^{P}) - v_{0} = \Delta B \left[\frac{B' + B''}{2\Delta B} \right]^{2} - (B' + B'') \left[\frac{B' + B''}{2\Delta B} \right]$$
$$= -\frac{(B' + B'')^{2}}{4\Delta B} < 0 \quad \text{seldom negligible} \quad \sim -\left| \frac{\overline{B}^{2}}{\Delta B} \right|$$
$$R(J_{HEAD}^{R}) - v_{0} = -\frac{(3B' - B'')^{2}}{4\Delta B} + 2B' > 0 \quad \sim +\left| \frac{\overline{B}^{2}}{\Delta B} \right|$$

Can't use easily picked-out head as approximation for band origin! Hard to find origin because no zero gap. Covered by returning branch.

Vibrational structure next time.