MIT OpenCourseWare
http://ocw.mit.edu

### 5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Lecture \#11: Pictures of Spectra and Notation

Last Time Selection, propensity and intensity rules

| $\overrightarrow{\mathrm{M}}(\mathrm{R})_{\mathrm{iff}}$ <br> absolute | $\boldsymbol{\alpha}_{\mathrm{sb}}(\theta, \phi)$ <br> rotational | nestrengths |  |
| :---: | :---: | :---: | :---: |
| rotation | permanent dipole | $\mathrm{P} \propto \mu^{2} \mathrm{~g}_{\mathrm{i}}$ or S | Sum rule |
| vibration | $\frac{\mathrm{dM}}{\mathrm{dQ}}$ | $P \propto\left(\frac{d M}{d Q}\right)^{2} \mathrm{vg}_{\mathrm{i}}$ | typical form for universal angular <br> factor $\rightarrow$ must |
| electronic | $M_{\text {if }}\left\langle v_{i} \mid v_{\mathrm{f}}\right\rangle$ | $\mathrm{P} \propto \mathrm{M}^{2} \mathrm{q}_{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{f}}} \mathrm{g}_{\mathrm{i}}$ | sum to 1 or to total degeneracy |

TODAY:
Patterns in spectra
Typical constants
How to assign spectra - problems and tricks
Notation

## PURE ROTATION

$\mu$-wave sources limit range of $\mathbf{J}$ sampled (more difficult to assign than expected) superposition of lines from vastly different energy regions, isotopomers
population effects.
How to tell up from down. $\leftarrow$ Think about this!

## VIBRATION-ROTATION

J range limited by T , not by radiation source. P and R branch structure - open, no heads, zero gap (easy to assign)
PQR notation
hot bands and isotopomers

## ELECTRONIC

Band heads due to large $|\Delta \mathrm{B}|$
blue vs. red degraded $\rightarrow \operatorname{sign}$ of $\Delta \mathrm{B}$ (hard to assign because of overlapping lines)
$\mathrm{J}_{\text {Head }}$
vibrational Sequences vs. Progressions
Qualitative Franck-Condon Principle
Universal notation for all molecular spectroscopy.
Upper level denoted by ${ }^{\prime}$ always stated first
Lower level denoted by " always stated second
$\Delta Z \equiv Z^{\prime}-Z^{\prime \prime}($ for any quantity, $Z$ )

$$
\mathrm{O}
$$

$$
\mathrm{P}
$$

$$
\begin{gathered}
\Delta \mathrm{J}=\mathrm{J}^{\prime}-\mathrm{J}^{\prime \prime} \\
-2 \\
-1 \\
0 \\
1 \\
2
\end{gathered}
$$

Q
i.e.
$R(J)$ means


R
S
Denote whether transition is absorption or emission by direction of arrow. Always state upper level first.

PURE ROTATION SPECTRA - $\mu$-wave (e.g. heteronuclear diatomic)
requires permanent dipole moment

$$
\begin{array}{llll}
v & 10-300 \mathrm{GHz} & {[\bar{v}=v / \mathrm{c}} & \left.\mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right] \\
\lambda & 3 \mathrm{~cm}-1 \mathrm{~mm} & \text { "cm-wave" and "mm-wave" regions }
\end{array}
$$

for ${ }^{1} \Sigma^{+} \Delta \mathrm{J}= \pm 1$ only because $\Omega=0$. recall $\mathrm{S}_{\mathrm{J}_{\mathrm{i}} \mathrm{J}_{\mathrm{f}}}^{\Omega \Omega}$

$\begin{array}{cclllll}\text { Typical B-value } & \approx 1 \mathrm{~cm}^{-1}=30 \mathrm{GHz} \\ \text { B: } & \mathrm{Cs}_{2} & 0.01 \mathrm{~cm}^{-1} & \mathrm{I}_{2} & 0.04 \mathrm{~cm}^{-1} & \mathrm{H}_{2} & 61 \mathrm{~cm}^{-1}\end{array}$
$\mathrm{B}\left(\mathrm{cm}^{-1}\right)=\frac{1}{\mathrm{R}^{2}(\mathrm{~cm})} \frac{1}{\mu(\mathrm{amu})} 1.685763 \times 10^{-15}$
$\mu=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$

$$
{ }^{12} \mathrm{C}=12.000 \ldots
$$

Microwave Spectrum: "Klystron", "Backward Wave Oscillator" (BWO) typical tuning range $<1 / 2$ octave $\quad \pm \sim 25 \% \quad 8-12 \mathrm{GHz}$

12-18
18-24
24-40
not DC to 100 GHz . See only a small portion of pure rotation spectrum for any given Exptl. setup.

## Level Diagram


$20 \square 6 \mathrm{~B}_{0}$
10 $\longrightarrow 2 \mathrm{~B}_{0}$

$$
\mathrm{J}=0, \mathrm{v}=0 \quad 0 \mathrm{~B}_{0}
$$

"hot bands" interspersed among cold band, even though $\omega \gg B$
Almost regular pattern of lines separated by $2 \mathrm{~B}\left(-4 \mathrm{~J}^{3} \mathrm{D}\right.$ makes lines draw closer together at high J$)$
intensity

## NON-LECTURE

$$
\mathrm{e}^{-\mathrm{F}\left(\mathrm{~J}^{\prime \prime}\right) / \mathrm{kT}}-\mathrm{e}^{\mathrm{J}+1 \leftarrow \mathrm{~J}\left(\mathrm{~J}^{\prime}\right) / \mathrm{kT}}=\left[1-\frac{\Delta \mathrm{F}=0 \text { (Z-polarized) }}{\mathrm{kT}}-1+\frac{\mathrm{F}\left(\mathrm{~J}^{\prime \prime}\right)}{\mathrm{kT}}\right]=\frac{\mathrm{F}\left(\mathrm{~J}^{\prime}\right)-\mathrm{F}\left(\mathrm{~J}^{\prime \prime}\right)}{\mathrm{kT}}=\frac{\hbar \mathrm{v}_{\mathrm{ROT}}}{\mathrm{kT}}
$$

How to assign? Can't see entire pattern. $\Delta v=2 \mathrm{BJ}$
Can usually guess $\mathrm{R}_{\mathrm{e}}$ to $\sim 10 \%$ so $\mathrm{B}_{\mathrm{e}}$ to $\sim 20 \%$
given a line at 15 GHz , probably $\mathrm{J}=2 \leftarrow 1$ next line would be at $3 / 215=22.5 \mathrm{GHz}$
if it was $1 \leftarrow 0$, next line would be at $2 / 115=30 \mathrm{GHz}$
if it was $3 \leftarrow 2$, next line would be at $4 / 3 \quad 15=20 \mathrm{GHz}$
So assignment is based on a guess followed by at least one confirming measurement.
Non- ${ }^{1} \Sigma^{+}$states and polyatomic molecules: other kinds of transitions possible
(always $\mathrm{M}_{\mathrm{z}, \mathrm{ii}} \Delta \Omega=0$ ) for linear polyatomics and symmetric tops
For $\Omega \neq 0$, etc. (parity doubling)


$$
\text { can have } \Delta \mathrm{J}=0 \text { " } \mathrm{Q} \text { branches" }
$$

Asymmetric tops $\rightarrow$ very complicated

No electric dipole? e.g. $\mathrm{O}_{2} \quad \mathrm{X}^{3} \Sigma_{\mathrm{g}}^{-} \Delta \Sigma=\Delta \Omega \neq 0$ fine structure transitions due to magnetic dipole.
VIBRATION-ROTATION spectra - IR $\quad 100-5000 \mathrm{~cm}^{-1}$
requires $\mathrm{dM}_{z \mathrm{ii}} / \mathrm{dQ} \neq 0$
for ${ }^{1} \Sigma^{+} \Delta \mathrm{J}= \pm 1$ only $\quad \Delta \mathrm{v}= \pm 1$ strongest
$\mathrm{G}(\mathrm{v})=\omega_{\mathrm{e}}(\mathrm{v}+1 / 2)-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{2}+\ldots$
$\mathrm{F}_{\mathrm{v}}(\mathrm{J})=\mathrm{B}_{\mathrm{v}} \mathrm{J}(\mathrm{J}+1)-\mathrm{D}_{\mathrm{v}} \mathrm{J}^{2}(\mathrm{~J}+1)^{2}$
$B_{v}=B_{e}-\alpha_{e}(v+1 / 2)$
NOTE: Signs. Because almost always see $\omega_{e} \mathrm{x}_{\mathrm{e}}, \mathrm{D}_{\mathrm{v}}, \alpha_{\mathrm{e}}>0$ as defined above!
typical $\omega_{\mathrm{e}} \approx 1000 \mathrm{~cm}^{-1} \quad \mathrm{Cs}_{2} 42 \mathrm{~cm}^{-1}, \mathrm{I}_{2} 215 \mathrm{~cm}^{-1}, \mathrm{H}_{2} 4400 \mathrm{~cm}^{-1}$


Lines spaced by $\approx 2 \mathrm{~B}$ with "zero-gap" of 4 B where $\mathrm{Q}(0)$ would be.

lines in R branch gradually pull closer together, branch goes to blue lines in P branch gradually pull further apart, branch goes to red

Double Humped Appearance of Vibration-Rotation band

$\mathrm{I} \sim(2 \mathrm{~J}+1) \mathrm{e}^{-\mathrm{BJ}(\mathrm{J}+1) \mathrm{kT}}$
Finer details:
Hot Bands: $1 \leftarrow 0$ looks like $2 \leftarrow 1$ except

1. $\quad 2 \leftarrow 1$ is shifted $2 \omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$ to red
2. "constant" difference between rotational lines is smaller by $2 \alpha_{e}(<\sim 1 \%)$
3. identical quadratic term $\Delta \mathrm{B}=\alpha_{\mathrm{e}}$
4. intensity down by $\mathrm{e}^{-\omega_{c} / \mathrm{kT}}$

Isotopomer Bands $\quad \mathrm{B}_{\mathrm{v}} \propto \mu^{-1} \quad \omega_{\mathrm{e}} \propto \mu^{-1 / 2}$
intensity depends on isotopic abundance, NOT on T

## Overtone Bands

1. $2 \leftarrow 0$ near $2 \omega_{\text {e }}$
2. linear term $\left(2 \mathrm{~B}^{\prime} \pm \Delta \mathrm{B}\right)$ in rotational branches almost same as for $\Delta \mathrm{v}=+1$ band.
3. quadratic term $2 \times$ as large $\rightarrow$ can sometimes see bandheads for high overtone bands
4. intensity weaker than $\Delta \mathrm{v}=1$ band, usually by 10 to $100 \times$

## ROTATIONAL ASSIGNMENT

$$
\begin{aligned}
& \text { trivial because of } \quad \text { presence of zero gap } \\
& \text { * no overlap of band with itself } \\
& \begin{array}{l}
\text { Dattern } \\
\text { recognition } \\
\text { trivial }
\end{array}
\end{aligned}
$$

## Electronic Spectra

${ }^{1} \Sigma^{+}-{ }^{1} \Sigma^{+}$for now - deal with non- ${ }^{1} \Sigma^{+}$soon.
No restriction on types of molecules. [Symmetry restrictions, $\mathrm{g} \leftrightarrow \mathrm{u}, \Sigma^{+} \leftrightarrow \Sigma^{+}, \Delta \mathrm{S}=0, \Delta \Lambda=\Delta \Omega=0, \pm 1$ ]
$v \quad 10,000 \mathrm{~cm}^{-1} \rightarrow 100,000 \mathrm{~cm}^{-1}$
VIS \& UV \& VUV
(not X-ray) because not sharp lines

Rotational Structure of one vibrational band of electronic transition: just like VIBRATIONROTATION band but more can happen.
$\Delta \mathrm{J}= \pm 1$ only
$\downarrow$ Band origin $\Delta \mathrm{T}_{\mathrm{e}}+\mathrm{G}^{\prime}\left(\mathrm{v}^{\prime}\right)-\mathrm{G}^{\prime \prime}\left(\mathrm{v}^{\prime \prime}\right)$
$R(J)=v_{0}+\Delta \mathrm{BJ}^{2}+\left(2 \mathrm{~B}^{\prime}+\Delta \mathrm{B}\right) \mathrm{J}+2 \mathrm{~B}^{\prime} \quad$ starts toward blue
$\mathrm{P}(\mathrm{J})=\mathrm{v}_{0}+\Delta \mathrm{BJ}^{2}-\left(2 \mathrm{~B}^{\prime}-\Delta \mathrm{B}\right) \mathrm{J} \quad$ starts toward red
Fortrat parabola - ambiguity about assignment
$\mathrm{Q}(\mathrm{J})=\mathrm{v}_{0}+\Delta \mathrm{BJ}^{2}+\Delta \mathrm{BJ}\left(\right.$ not for $\left.{ }^{1} \Sigma^{+}-{ }^{1} \Sigma^{+}\right)$
usually compact
$\Delta B$ can be large and have either sign because $B^{\prime}-B^{\prime \prime} \neq-\alpha_{e}$
Heads form!

$$
\Delta \mathrm{B}>0 \quad \mathrm{R}_{\mathrm{e}}^{\prime}<\mathrm{R}_{\mathrm{e}}^{\prime \prime}
$$

Head in P degrades to blue


$$
\Delta \mathrm{B}<0 \quad \mathrm{R}_{\mathrm{e}}^{\prime}>\mathrm{R}_{\mathrm{e}}^{\prime \prime}
$$

Head in R
degrades to red


By inspection, can tell sign of $\Delta \mathrm{B} \Rightarrow$ bonding nature of excited state.
At what J does head form?
How far is head from band origin?

$$
\begin{aligned}
& v=\frac{d P(J)}{d J}=2 \Delta B J-\left(B^{\prime}+B^{\prime \prime}\right) \\
& \text { Extrenum } \\
& J_{\text {HEAD }}^{\mathrm{P}}=\frac{\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}}{2 \underbrace{\Delta \mathrm{~B}}_{>0}} \quad \text { if } \Delta \mathrm{B}>0 \text {, then } \mathrm{J}_{\text {HEAD }}^{\mathrm{P}} \sim \frac{\overline{\mathrm{~B}}}{\Delta \mathrm{~B}} \\
& J_{\text {HEAD }}^{R}=-\frac{\left(3 \mathrm{~B}^{\prime}+\mathrm{B}^{\prime \prime}\right)}{2 \underbrace{\Delta \mathrm{~B}}_{<0}} \quad \text { if } \Delta \mathrm{B}<0 \text {, then } \mathrm{J}_{\text {HEAD }}^{\mathrm{R}} \sim-\frac{\overline{\mathrm{B}}}{\Delta \mathrm{~B}} \\
& \int \mathrm{P}\left(\mathrm{~J}_{\mathrm{HEAD}}^{\mathrm{P}}\right)-v_{0}=\Delta \mathrm{B}\left[\frac{\mathrm{~B}^{\prime}+\mathrm{B}^{\prime \prime}}{2 \Delta \mathrm{~B}}\right]^{2}-\left(\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}\right)\left[\frac{\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}}{2 \Delta \mathrm{~B}}\right] \\
& =-\frac{\left(\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}\right)^{2}}{4 \Delta \mathrm{~B}}<0 \quad \text { seldom negligible } \quad \sim-\left|\frac{\overline{\mathrm{B}}^{2}}{\Delta \mathrm{~B}}\right| \\
& R\left(\mathrm{~J}_{\text {HEAD }}^{\mathrm{R}}\right)-v_{0}=-\frac{\left(3 \mathrm{~B}^{\prime}-\mathrm{B}^{\prime \prime}\right)^{2}}{4 \Delta \mathrm{~B}}+2 \mathrm{~B}^{\prime}>0 \quad \sim+\left|\frac{\overline{\mathrm{B}}^{2}}{\Delta \mathrm{~B}}\right|
\end{aligned}
$$

Can't use easily picked-out head as approximation for band origin! Hard to find origin because no zero gap. Covered by returning branch.
||type transition

$\perp$ type transition


Vibrational structure next time.

