MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#10: Transitions II

Last Time

transition
probabilities

$$
\begin{array}{ccc}
\text { pure rotation } & \mathrm{i}=\mathrm{f} \quad \rightarrow \quad \mathrm{~b}=\mathrm{z} \quad & \text { for diatomic }(\mu \text { along } \mathrm{z}) \\
\Downarrow
\end{array}
$$

$$
\langle\mathrm{v}| \mathrm{M}_{\mathrm{z}, \mathrm{ii}}(\mathrm{R})|\mathrm{v}\rangle_{\mathrm{R}}=\underbrace{\mathrm{M}_{z, \mathrm{ii}}\left(\mathrm{R}_{\mathrm{e}}\right)}_{\text {if homonuclear } \rightarrow=0}+\left.\frac{\mathrm{dM}}{\mathrm{dQ}}\right|_{\mathrm{Q}=0} \mathrm{Q}_{\mathrm{vv}}+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} \mathrm{M}}{\mathrm{dQ}^{2}}\right|_{\mathrm{Q}=0} \mathrm{Q}_{\mathrm{vv}}^{2}
$$

$$
\mathrm{Q}_{\mathrm{vv}}^{\mathrm{n}} \text { matrix elements in Harmonic Oscillator Basis Set } \quad\left(\mathrm{Q}=\mathrm{R}-\mathrm{R}_{\mathrm{e}}\right)
$$

$$
\left.\left.\mathrm{P}_{\mathrm{if}} \propto \underset{\mu^{2}}{\text { const. }}+\underset{(\mathrm{d} \mu / \mathrm{dR})^{2}}{\operatorname{small} \mathrm{v}^{2}} \text { term }\right]\left|\left\langle\Omega \mathrm{J}_{\mathrm{i}} \mathrm{M}\right| \alpha_{\mathrm{Zz}}\right| \Omega \mathrm{J}_{\mathrm{f}} \mathrm{M}\right\rangle\left.\right|^{2}
$$

Today: finish pure rotation spectrum
Hönl-London Factors
rotation-vibration spectrum $\Delta v= \pm 1$ propensity rule $\quad d M / d R \neq 0$ anharmonic and centrifugal correction terms
[PERTURBATION THEORY]
rotation-vibration-electric spectrum all $\Delta v \rightarrow$ Franck Condon factors
R-centroid approximation stationary phase approximation

Final factor is $\left.\left|\left\langle\Omega \mathbf{J}_{\mathrm{i}} \mathbf{M}\right| \alpha_{\mathrm{Zz}^{\prime}}\right| \Omega \mathbf{J}_{\mathrm{f}} \mathrm{M}\right\rangle\left.\right|^{2 \begin{array}{c}\text { direction } \\ \text { cosine } \\ \text { matrix } \\ \text { element }\end{array}}$
Each J consists of $2 \mathrm{~J}+1$ degenerate M -components.

direction cosine matrix elements \rightarrow sum over $M \rightarrow$ Hönl-London rotational linestrength

 [can't do this sum so simply for OODR because initial M's are not equally populated] factors see Hougen page 39, Table 7

Herzberg Diatomics, page 208

		common final state
sum rule	$\int=\frac{\left(\mathrm{J}_{\mathrm{f}}+\Omega+1\right)\left(\mathrm{J}_{\mathrm{f}}-\Omega+1\right)}{3\left(\mathrm{~J}_{\mathrm{f}}+1\right)} \sim \frac{\mathrm{J}_{\mathrm{f}}}{3}$	$\begin{gathered} \mathrm{J}_{\mathrm{i}}=\mathrm{J}_{\mathrm{f}}+1 \\ (\mathrm{R} \text { or P) } \end{gathered}$
$\frac{2 \mathrm{~J}_{\mathrm{f}}+1}{3} \mathrm{~g}_{\mathrm{f}}^{\mathrm{el}}$	$\left\{=\frac{\Omega^{2}\left(2 \mathrm{~J}_{\mathrm{f}}+1\right)}{3 \mathrm{~J}_{\mathrm{f}}} \sim \frac{2 \Omega^{2}}{3 \mathrm{~J}_{\mathrm{f}}}\right.$	$\mathrm{J}_{\mathrm{i}}=\mathrm{J}_{\mathrm{f}}$ (Q branch weak at high J)
useful for checking calculations	$=\frac{\left(\mathrm{J}_{\mathrm{f}}+\Omega\right)\left(\mathrm{J}_{\mathrm{f}}-\Omega\right)}{3 \mathrm{~J}_{\mathrm{f}}} \sim \frac{\mathrm{J}_{f}}{3}$	$\begin{gathered} \mathrm{J}_{\mathrm{i}}=\mathrm{J}_{\mathrm{f}}-1 \\ (\mathrm{P} \text { or R) } \end{gathered}$

The increase with J is due to $2 \mathrm{~J}+1$ degeneracy factor being included. These formulas for a common final state do not depend on whether J_{i} or J_{f} is upper or lower state. Similar set of formulas for transitions out of common initial state.

These formulas cannot depend on our choice of quantization axis. If we sum over equal $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ polarized absorption or emission, the factor of 3 must go away because of the isotropy of space and the equivalence of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.

Next case: Rotation-Vibration Spectra (Diatomic or Linear Molecule)

$$
\begin{aligned}
& \mathrm{i}=\mathrm{f} \quad-\text { still have } \Omega_{\mathrm{i}}=\Omega_{\mathrm{f}} \Rightarrow \alpha_{\mathrm{Zz}} \\
& \mathrm{v}_{\mathrm{i}} \neq \mathrm{v}_{\mathrm{f}}
\end{aligned}
$$

Here the absolute intensity factor is slightly different from that for pure rotation - do the same power series expansion in Q about R_{e} (i.e. $\mathrm{Q}=0$).

Other contributors to vibrational intensities:

* vibrational anharmonicity: perturbation theory mixes harmonic $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}} \pm 1$ character into real $\mathrm{v}_{\mathrm{f}} \neq \mathrm{v}_{\mathrm{i}} \pm 1$ levels
* electrical anharmonicity: next term $\left.\frac{\mathrm{d}^{2} \mathrm{M}_{\mathrm{z}, \mathrm{i}}}{\mathrm{dQ}^{2}}\right|_{\mathrm{Q}=0} \neq 0 \Rightarrow \Delta \mathrm{v}= \pm 2$
* rotational effects. $\left|v_{i}\right\rangle$ for J is not orthogonal to $\left|v_{f} \neq v_{i}\right\rangle$ for $J \pm 1$! Then permanent dipole moment, $\mathrm{M}_{\mathrm{z}, \mathrm{ii}}\left(\mathrm{R}_{\mathrm{e}}\right)$, can contribute to $\mathrm{P}_{\text {if }}$ for $\Delta \mathrm{v}= \pm 1$ transition.

$$
\begin{aligned}
|v \pm 1\rangle & =\frac{\left\langle v_{\mathrm{i}}\right| \mathrm{B}(\mathrm{R})|\mathrm{v} \pm 1\rangle \mathrm{J}(\mathrm{~J}+1)}{\Delta \mathrm{G}}|\mathrm{v}\rangle^{\circ}+|\mathrm{v} \pm 1\rangle^{\circ} \\
|\mathrm{vJ}\rangle & =|\mathrm{v} 0\rangle^{\circ}+\sum_{\mathrm{v}^{\prime}} \frac{\langle\mathrm{v} 0| \mathrm{B}(\mathrm{R}) \mathrm{J}(\mathrm{~J}+1)\left|\mathrm{v}^{\prime} 0\right\rangle\left|\mathrm{v}^{\prime} 0\right\rangle^{\circ}}{\mathrm{E}_{\mathrm{v}}^{\circ}-\mathrm{E}_{\mathrm{v}^{\prime}}^{0}}
\end{aligned}
$$

$$
\mathrm{B}(\mathrm{R})=\mathrm{B}\left(\mathrm{R}_{\mathrm{e}}\right)\left[1+\frac{\mathrm{Q}}{\mathrm{R}_{\mathrm{e}}}\right]^{-2}
$$

$$
=B\left(R_{e}\right)\left[1-2\left(Q / R_{e}\right)+\ldots\right]
$$

$$
|v J\rangle \approx|v 0\rangle^{\circ}-\left(\frac{2}{R_{e}}\right) B\left(R_{e}\right) \mathrm{J}(\mathrm{~J}+1)\left[\frac{\langle\mathrm{v}, 0| \mathrm{Q}|\mathrm{v} \pm 1,0\rangle}{\mp \hbar \omega}|\mathrm{v} \pm 1,0\rangle^{\circ}+\ldots\right]
$$

$$
\langle v \pm 1 J| M(R)|v J\rangle=\frac{\partial M}{\partial Q} v+M\left(R_{e}\right) B_{e} J(J+1) \text { etc. }
$$

$$
\begin{aligned}
& \left\langle v_{i}\right| M_{z, i i}(R)\left|v_{f}\right\rangle=M_{z, i i}\left(R_{e}\right)\left\langle v_{i} \mid v_{f}\right\rangle+\left.\frac{d M_{z, i i}}{d Q}\right|_{Q=0}\left\langle v_{i}\right| Q\left|v_{f}\right\rangle+\left.\frac{1}{2} \frac{d^{2} M_{z, i i}}{d Q^{2}}\right|_{Q=0}\left\langle v_{i}\right| Q^{2}\left|v_{f}\right\rangle \\
& \left\langle v_{i} \mid v_{f}\right\rangle=0 \text { when } v_{i} \neq v_{f} \text { by orthogonality } \\
& \begin{cases}\langle\mathrm{v}| \mathrm{Q}|\mathrm{v}-1\rangle=\left(\frac{\hbar}{\mu \omega_{\mathrm{e}}}\right)^{1 / 2} \mathrm{v}^{1 / 2} & \begin{array}{l}
\text { for harmonic oscillator } \\
\Delta \mathrm{v}= \pm 1 \text { propensity rule } \\
\text { amplitude increases } \propto \mathrm{v}^{1 / 2}
\end{array}\end{cases} \\
& \text { requires }\left.\frac{\mathrm{dM}}{\mathrm{dQ}}\right|_{\mathrm{Q}=0} \neq 0 \quad \mathrm{P}_{\mathrm{if}} \propto \mathrm{v}
\end{aligned}
$$

Herman-Wallis effect. See 3 elegant papers (especially the first one) from David Nesbitt's group:
D. Nelson, Jr., A. Schiffman, D. Yaron, and D. Nesbitt, "Absolute Infrared Transition Moments for Open Shell Diatomics from J Dependence of Transition Intensities: Application to OH", J. Chem. Phys. 90, 5443 (1989);
D. Nelson, Jr., A. Schiffman, and D. Nesbitt, "The Dipole Moment Function and Vibrational Transition Intensities of OH", J. Chem. Phys. 90, 5455 (1989);
D. Nelson, Jr., A. Schiffman, J. Orlando, J. Burkholder, and D. Nesbitt, "H + O FourierTransform Infrared Emission and Laser Absorption Studies of OH ($X^{2} \Pi$) Radical: An Experimental Dipole Moment Function and State-To-State Einstein A Coefficients", J. Chem. Phys. 93, 7003 (1990).
cross terms give sign of $d M / d R$ with respect to $M\left(R_{e}\right)$.
Add transition amplitudes before taking I P.
Non-Lecture: Anharmonic Correction to vibrational wavefunction.

$$
\begin{aligned}
\left|\cdot \mathrm{v}^{\prime}\right\rangle & =|\mathrm{v}\rangle^{\circ}+\mathrm{c}_{\mathrm{v}, \mathrm{v} \pm 1}|\mathrm{v} \pm 1\rangle \\
\mathrm{V}(\mathrm{R}) & =\mathrm{kQ}^{2} / 2+\underbrace{\mathrm{aQ}^{3}}_{\mathbf{H}^{\prime}} \\
\mathrm{c}_{\mathrm{v}, \mathrm{v} \pm 1} & =\frac{\langle\mathrm{v}| \mathrm{aQ} Q^{3}|\mathrm{v} \pm 1\rangle}{ \pm \hbar \omega}=\mathrm{a} \omega^{-5 / 2} \mu^{-3 / 2} \hbar^{1 / 2} \underset{\substack{\text { see perturation theory } \\
\text { for formulas. }}}{\mathrm{f}(\mathrm{v}) \approx \mathrm{v}^{3 / 2}}
\end{aligned}
$$

Pure rotation requires $\mathrm{M}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{e}}\right) \neq 0$
Vibration-Rotation mostly due to $\left.\frac{d M_{z}}{d Q}\right|_{Q=0} \neq 0$
$\Delta \mathrm{v}= \pm 1$ propensity, $\mathrm{P}_{\mathrm{if}} \propto \mathrm{v}$
but also vibrational and electronic anharmonicities and centrifugal distortion
nearly perfect J-independence (except centrifugal effects - hydrides)
always $\left\{\begin{array}{l}M_{z} \neq 0 \text { rotation } \quad M_{x}=M_{y}=0 \quad \text { "parallel type" } \\ \frac{d M_{z}}{d Q} \neq 0 \text { rotation - vibration (weak } Q \text { branches) recall Hönl-London factor }\end{array}\right.$
(no such restriction to only $\mathrm{M}_{\mathrm{z}} \neq 0$ in polyatomic molecules)
can have strong Q branches

Big differences when we consider electronic transitions $\mathrm{i} \neq \mathrm{f}$

* not restricted to only $\mathrm{M}_{\mathrm{z}}(\mathrm{R})$ (x, y components also)
* no simple vibrational selection or propensity rules as for the harmonic limit of 7 vibration-rotation because $\left\{\left|\mathrm{v}_{\mathrm{i}}\right\rangle\right\}$ is not orthogonal to $\left\{\left|\mathrm{v}_{\mathrm{f}}\right\rangle\right\}$
* awkwardness about $\mathrm{M}_{\mathrm{b}, \mathrm{f}}(\mathrm{R})$. We would like to express vibrational matrix elements of $M_{b, i f}$ as function of $R_{v_{i} v_{f}}$ rather than $\left[M_{b, i f}(R)\right]_{v_{i} v_{f}}$.
$\{\mathrm{R}$ - centroid approximation
stationary phase, semi-classical Franck-Condon principle
vibrational intensity distribution
provides information about difference in structure

$$
\left.\mathrm{P}_{\mathrm{if}} \propto \mathrm{I}_{\mathrm{Z}}\left|\sum_{\mathrm{b}}\left\langle\Omega_{\mathrm{i}} \mathrm{~J}_{\mathrm{i}} \mathrm{M}\right| \alpha_{\mathrm{Zb}}\right| \Omega_{\mathrm{f}} \mathrm{~J}_{\mathrm{f}} \mathrm{M}\right\rangle\left.\left\langle\mathrm{v}_{\mathrm{i}}\right| \mathrm{M}(\mathrm{R})_{\mathrm{b}, \mathrm{if}}\left|\mathrm{v}_{\mathrm{f}}\right\rangle\right|^{\text {elecronic }} \text { transition moment }<2 .
$$

expand $M(R)$ about $R^{\prime}-$ some arbitrary value since $R_{e i} \neq R_{e f}$ expand, take ME and divide through by $\left\langle\mathrm{v}_{\mathrm{i}} \mid \mathrm{v}_{\mathrm{f}}\right\rangle$

provided that the R-centroid approximation is valid.

This is a very good approximation because of "stationary phase"

(justification for typical type of spectroscopic simplification)

Semi-classical Franck-Condon principle

See:

* J. Tellinghuisen, "Reflection and Interference Structure in Diatomic Franck-Condon Distributions," J. Mol. Spectrosc. 103, 455 (1984)
* C. Noda and R. N. Zare, " Relation Between Classical and Quantum Formulations of the FranckCondon Principle: The Generalized r-centroid Approximation," J. Mol. Spectrosc. 95, 254 (1982)

This R-centroid approximation is convenient because we can think of $M(R)$ as a simple function of a single variable $\overline{\mathrm{R}}_{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{f}}}$ (which usually turns out to be a monotonic function of the wavelength of the transition, λ)

In the R-centroid approximation

$$
\begin{aligned}
& P_{i j} \propto \mathrm{Iq}_{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{f}}}\left|\mathrm{M}\left(\overline{\mathrm{R}}_{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{f}}}\right)_{\mathrm{b}, \mathrm{if}}\right|^{2} \mathrm{~S}_{\mathrm{J}_{\mathrm{i}} \mathrm{~J}_{\mathrm{f}}}^{\Omega_{\mathrm{i}} \Omega_{\mathrm{f}}} \\
& \text { Franck-Condon factor } \\
& \text { (overlap squared) }
\end{aligned}
$$

Now what is "stationary phase" approximation?
How is it related to semi-classical F-C principle?
vertical $\quad * \Delta \mathrm{R}=0$
no impulse $* \Delta \mathrm{P}=0$

Transition is vertical $(\Delta R=0)$ and "occurs" at that R where $p_{\text {upper }}=p_{\text {lower }}$. This means that wavefunctions are oscillating at the same spatial frequency.

$$
\mathrm{I}(\mathrm{R})=\int_{\mathrm{r}_{(}\left(\mathrm{v}_{\mathrm{r}}\right)}^{\mathrm{R}} \chi_{\mathrm{vi}_{\mathrm{i}}}^{*}\left(\mathrm{R}^{\prime}\right) \chi_{\mathrm{v}_{\mathrm{f}}}\left(\mathrm{R}^{\prime}\right) \mathrm{dR}^{\prime}
$$

This shows how F-C overlap integral accumulates.
Spatial oscillations of χ given by de Broglie $\quad \lambda=\frac{\mathrm{h}}{\mathrm{p}}$.

All R^{n} integrals accumulate near stationary phase point.

