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Lecture #9: The Born-Oppenheimer Approach to Transitions
-Selection Rules 
-Relative Intensities 

First of 3 lectures illustrating simplest patterns in 3 main types of transitions - mostly for diatomic
molecules 

permanent µ pure rotation (microwave) ∆v ≡ 0 
change in µ rotation-vibration (IR) ∆v ≈ ±1 
electronic symmetries rotation-vibration-electronic (UV – VIS) ∆v = any 

How does the Born-Oppenheimer Approximation help us to predict what to expect in the spectrum? 

Begin reading Hougen monograph http://physics.nist.gov/Pubs/Mono115/contents.html
Chapter 6 of Bernath 

KEY TOPICS 

 
* Electric dipole transitions: e ∑ rα → Mif (R) 

α vector 
electrons in body 

integrate over r 

* DIRECTION COSINES	 LAB XYZ → body xyz

integrate over θ, φ, χ


* Selection Rules

symmetry and propensity


* Hönl-London rotational linestrength factors

sum over MJ


Last time I was concerned with how to go 
H → H ° + H ′ → EevJ 

exact simplified missing exact

stuff


This was mostly formal.

As spectroscopists we care much less about how to compute spectra ab initio than how to extract

information from real spectra.


The reason the Born-Oppenheimer approximation is so important is that it enables us to simplify our

interpretation of spectra.
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It is very helpful to think of Eevr = Ti + Gi(v) + Fi,v(J) 

Φi(r;R) |ΩJM〉
χi,v(R) 

Vi,J(R) 

and that all electronic properties vary slowly with R, and all observable quantities normally vary
smoothly with v,J. 

All non-smooth variations should be explained by resonances in an energy denominator of a
perturbation expansion. 

Expect to find patterns in spectra that can be represented as power series in (v + 1/2) and J(J + 1). 

BRUTE

FORCE


EivJ = Te
i + ∑Y

,m (v +1 / 2 ) [J(J +1) ]m 

,m 
The Y,m are “molecular constants”. They are of no special importance except as intermediate step in
Eevr → Vi,J(R). 

For the present, we must concentrate on how to go from spectrum → Y,m. 

To do this we need to know what will appear in the spectrum:
* selection rules 
* relative intensity patterns

electric dipole transitions 

i vi Ωi JiMiPif ∝
εL ·

oscillating electric field in LAB 

µb 

body (dipole antenna)
body-fixed coordinates of e– with 
respect to center of mass. 

fΩf JfMf vf 

µ = e rα 
α 
∑ 

2 



z ẑ)

x 
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In the spirit of Born-Oppenheimer we get rid of all electronic coordinates by integrating over r. 

Only the electronic wavefunctions and ∑ rα depend on r. 
α 

electrons 

 
e
 i ∑rα
 f
 ≡ 

vector in 
Mif (R) 

bodyα r frame 

transition 
dipole

moment 
function 

xx̂ + yŷ + zẑ
(3 integrals) 

3 Mif 
components 

next we integrate over θ,φ: the orientation of body z with respect to LAB XYZ (for polyatomics we
would need 3 Euler angles). 

z 

φ 

z 

θ DIRECTION COSINES 

εL · = ( X + εY Y + εZ Z)· M x̂ + M ŷ + Mµb εX 
 ( x y 

 ·ˆ ( )y X x ≡ cos X, x̂ Lb  a 3 ×  3 matrix 
LAB body 

⎛
X ̂x Xŷ Xẑ 
 

Zẑ 

⎞

⎟
⎟
⎟


⎜
⎜
⎜


α θ, φ) =( 
⎝
 ⎠


It requires 3 Euler angles to define XYZ with respect to xyz, but θ, φ are only 2 needed for a diatomic
molecule. 

�
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In order to specify 
r  in both LAB and body, need one more angle. Phase choice — conventionally used 

in ab initio calculations. Unexpected result below. [Why do we care? Electronic coordinates. Nuclei 
are by definition on the z axis.] This is the transformation that relates LAB to body (fixed choice of 
x = π/2). 

Does not need to be Hermitian. Needs only to be unitary α–1 = α†. Check!


Note that, when θ = φ = 0 (z along Z), we can see unexpected effect of arbitrary phase choice.


0 −1 0
⎛
 ⎞


OK, now we are ready to do the θ,φ integration. |〈θφ|ΩJM〉|2 is probability of
Only factor in ε·Mif  integral that depends on θ,φ is |ΩJM〉

 
finding z pointing in θφ 
direction with respect to XYZ. 

〈ΩiJiMi|α

⎝

⎜
⎜⎜

xyzXYZ 

Lb|ΩfJfMf〉θ,φ


⎟ 
⎟⎟
⎠


i.e. Y↔x(0,0
 1 0 0 
0 

) =
 X↔–y

(extra rotation about Z by π/2)


0 1


direction cosine 
matrix elements 

MJ 

Selection rules 
BRANCH ∆J = 0, ±1 

TYPE OF BAND ∆Ω = 0 for Mz,if ≠ 0 “parallel” or ∆Ω = ±1 for Mx,if or My,if ≠ 0 “⊥” 

POLARIZATION ∆MJ = 0 for εz ≠ 0 “π”-polarized, ∆M = ±1 for εx or εy ≠ 0 “σ” 

�



 

2 
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So we have 

Ωf Jf MfPif ∝ ∑ εS vi Mb,if (R) vf ΩiJ iMi αSb 
S,b  R 


θ

,φ 

sum inside of | |2 

overall intensity polarization dependence
rotational selection rules 
sub-band selection rule 

OK. Now let’s look at specific cases. 

Pure Rotation Spectrum	 i ≡ f 
vi ≡ vf 

1Λ (only Ω = Λ) 
if we restrict consideration to singlet states, Ωi = Ωf


∆Ω = 0 ↔ Mz,ii ≠ 0 Mx,ii = My,ii = 0
αSb ME’s are 
only	 not so simpleproduct of 2 possibility for polyatomics 

only one component of
transition moment is 

non-zero 
factors: body

Moreover, if light is linearly polarized, we can choose Z as polarization axis, thenand LAB 
only εZ ≠ 0 ↔ ∆M = 0 

So we have simplified it to 

Pif ∝ ε
2 vi Mz,ii (R) vi Ωi JiMi αZz Ωi JfMi θφ R

∝Intensity 
Next we consider selection rules for 2 factors in this equation. 

µ = er  is odd with respect to i 

Body-fixed inversion: i 
[not LAB inversion: I] which defines parity in atoms 

i Φi(r;R) ≠ ± Φi(r;R) (i on total wavefunction) 

not a guaranteed symmetry
except for homonuclear 
molecule 

g,u symmetry 

** no pure rotation spectrum for homonuclear Mii(R) = 0
** yes pure rotation spectrum for heteronuclear Mii(R) ≠ 0 

2 
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reflection thru plane
containing internuclear axis



All diatomic molecules have σ v(xz) and σ v(yz) symmetry elements. 
This means that Mx,ii = My,ii = 0 for all diatomic molecules. 

 
So, for diatomic molecule we have only one non-zero component of M (R) (unless homonuclear). 

Expand in power The Dipole Moment Function (Permanent)

series about Re dM
(or some other ) +

convenient point) 

Mz,ii (R) = Mz,ii (Re dR R =Re 

(R − Re ) + 1 d2M (R − Re )
2 

2 dR2 
Q Q2 

Now we can take vibrational matrix elements. 

= Mz,ii (Re ) + dM 1 d2Mvi Mz,ii (R) vi R    dQ Q=0 
(Qvivi ) + 

2 dQ2 (Q2 )vivi 

permanent dipole
at Re 

Q and Q2 matrix elements are trivial in Harmonic Oscillator Basis Set. 

v | Q | v = 0 
v | Q2 | v = (v +1 / 2)
µω 

So this tells us that * pure rotation ∝ Mz,ii (Re ) 
2 

* varies negligibly with v (intensity ≈ const. + small v2 term)
* present treatment ignores J-dependence of ViJ(R) → χi,v,J - usually negligible 




