MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#9: The Born-Oppenheimer Approach to Transitions

-Selection Rules
 -Relative Intensities

First of 3 lectures illustrating simplest patterns in 3 main types of transitions - mostly for diatomic molecules

permanent μ	pure rotation (microwave)	$\Delta \mathrm{v} \equiv 0$
change in μ	rotation-vibration (IR)	$\Delta \mathrm{v} \approx \pm 1$
electronic symmetries	rotation-vibration-electronic (UV - VIS)	$\Delta \mathrm{v}=$ any

How does the Born-Oppenheimer Approximation help us to predict what to expect in the spectrum?
Begin reading Hougen monograph http://physics.nist.gov/Pubs/Mono115/contents.html Chapter 6 of Bernath

KEY TOPICS

```
* Electric dipole transitions: e \(\sum_{\substack{\alpha \\ \text { electrons }}} \overrightarrow{\mathrm{r}}_{\alpha} \rightarrow \underset{\substack{\text { vector } \\ \text { in body }}}{\overrightarrow{\mathrm{M}}_{\mathrm{if}}}(\mathrm{R})\)
    integrate over \(r\)
* DIRECTION COSINES LAB XYZ \(\rightarrow\) body xyz
        integrate over \(\theta, \phi, \chi\)
* Selection Rules
    symmetry and propensity
* Hönl-London rotational linestrength factors
        sum over \(\mathrm{M}_{\mathrm{J}}\)
```

Last time I was concerned with how to go

$\underset{\text { exact }}{\widehat{\mathbf{H}}} \rightarrow \underset{\text { simplified }}{\widehat{\mathbf{H}}^{\circ}}+\underset{$| missing |
| :---: |
| stuff |$}{\widehat{\mathbf{H}}^{\prime}} \rightarrow \quad{ }_{\text {exact }}^{\mathrm{E}_{\text {evJ }}}$

This was mostly formal.
As spectroscopists we care much less about how to compute spectra $a b$ initio than how to extract information from real spectra.

The reason the Born-Oppenheimer approximation is so important is that it enables us to simplify our interpretation of spectra.

It is very helpful to think of $E_{\text {evr }}=T_{i}+G_{i}(v)+F_{i, v}(J)$

and that all electronic properties vary slowly with R, and all observable quantities normally vary smoothly with v,J.

All non-smooth variations should be explained by resonances in an energy denominator of a perturbation expansion.

Expect to find patterns in spectra that can be represented as power series in $(v+1 / 2)$ and $J(J+1)$.

The $\mathrm{Y}_{\ell, \mathrm{m}}$ are "molecular constants". They are of no special importance except as intermediate step in $\mathrm{E}_{\text {evr }} \rightarrow \mathrm{V}_{\mathrm{i}, \mathrm{J}}(\mathrm{R})$.

For the present, we must concentrate on how to go from spectrum $\rightarrow \mathrm{Y}_{\ell, \mathrm{m}}$.
To do this we need to know what will appear in the spectrum:

* selection rules
* relative intensity patterns
electric dipole transitions

In the spirit of Born-Oppenheimer we get rid of all electronic coordinates by integrating over r.

Only the electronic wavefunctions and $\sum_{\substack{\alpha \\ \text { electrons }}} \overrightarrow{\mathrm{r}}_{\alpha}$ depend on r .

next we integrate over θ, ϕ : the orientation of body z with respect to LAB XYZ (for polyatomics we would need 3 Euler angles).

DIRECTION COSINES
$\vec{\varepsilon}_{\mathrm{L}} \cdot \vec{\mu}_{\mathrm{b}}=\left(\varepsilon_{\mathrm{X}} \widehat{\mathrm{X}}+\varepsilon_{\mathrm{Y}} \widehat{\mathrm{Y}}+\varepsilon_{\mathrm{Z}} \hat{Z}\right) \cdot\left(\mathrm{M}_{\mathrm{x}} \hat{\mathrm{X}}+\mathrm{M}_{\mathrm{y}} \hat{\mathrm{y}}+\mathrm{N}\right.$
$\widehat{X} \cdot \hat{X} \equiv \cos (\widehat{X}, \hat{X})$

$$
\alpha(\theta, \phi)=\left(\begin{array}{ccc}
\widehat{X} \hat{\mathbf{x}} & \widehat{\mathrm{X}} \hat{\mathrm{y}} & \widehat{\mathrm{X}} \hat{\mathrm{Z}} \\
& \ddots & \\
& & \hat{\mathrm{Z}} \hat{\mathrm{z}}
\end{array}\right)
$$

It requires 3 Euler angles to define XYZ with respect to xyz , but θ, ϕ are only 2 needed for a diatomic molecule.

In order to specify $\overrightarrow{\mathrm{r}}$ in both LAB and body, need one more angle. Phase choice - conventionally used in ab initio calculations. Unexpected result below. [Why do we care? Electronic coordinates. Nuclei are by definition on the z axis.] This is the transformation that relates LAB to body (fixed choice of $\mathrm{x}=\pi / 2$).

$$
\left(\begin{array}{l}
\left(\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right) \\
\left(\begin{array}{ccc}
-\sin \phi & -\cos \theta \cos \phi & \sin \theta \cos \phi \\
\cos \phi & -\cos \theta \sin \phi & \sin \theta \sin \phi \\
0 & \sin \theta & \cos \theta
\end{array}\right)_{\substack{\alpha(\theta, \phi) \\
\text { LAB }}}^{\left(\begin{array}{cc}
\text { See Hougen page 18 }
\end{array}\right.}\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)
\end{array}\right.
$$

Does not need to be Hermitian. Needs only to be unitary $\alpha^{-1}=\alpha^{\dagger}$. Check!
Note that, when $\theta=\phi=0$ (z along Z), we can see unexpected effect of arbitrary phase choice.

$$
\alpha(0,0)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& \quad \begin{array}{l}
\mathrm{Y} \rightarrow \mathrm{x} \\
\text { i.e. } \\
\text { iextra rotation about } Z \text { by } \pi / 2)
\end{array}
\end{aligned}
$$

OK, now we are ready to do the θ, ϕ integration. Only factor in $\vec{\varepsilon} \cdot \vec{M}_{\text {if }}$ integral that depends on θ, ϕ is $|\Omega \mathrm{JM}\rangle$

$$
\langle\text { SR, }
$$

Selection rules

BRANCH

$$
\Delta \mathrm{J}=0, \pm 1
$$

TYPE OF BAND $\quad \Delta \Omega=0$ for $\mathrm{M}_{\mathrm{z}, \mathrm{if}} \neq 0$ "parallel" or $\Delta \Omega= \pm 1$ for $\mathrm{M}_{\mathrm{x}, \mathrm{i}}$ or $\mathrm{M}_{\mathrm{y}, \mathrm{if}} \neq 0$ " \perp "
POLARIZATION $\Delta \mathrm{M}_{\mathrm{J}}=0$ for $\varepsilon_{\mathrm{z}} \neq 0$ " $\pi "$ "-polarized, $\Delta \mathrm{M}= \pm 1$ for ε_{x} or $\varepsilon_{\mathrm{y}} \neq 0$ " σ "

So we have

OK. Now let's look at specific cases.
Pure Rotation Spectrum $\quad i \equiv f$

$$
\mathrm{v}_{\mathrm{i}} \equiv \mathrm{v}_{\mathrm{f}}
$$

So we have simplified it to

$$
\mathbf{P}_{\mathrm{if}} \propto \underbrace{\varepsilon^{2}}_{\propto \text { Intensity }}\left|\left\langle\mathrm{V}_{\mathrm{i}}\right| \mathrm{M}_{\mathrm{z}, \mathrm{ii}}(\mathrm{R})\right| \mathrm{V}_{\mathrm{i}}\rangle\left._{\mathrm{R}}\left\langle\Omega_{\mathrm{i}} \mathbf{J}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}\right| \alpha_{\mathrm{Zz}}\left|\Omega_{\mathrm{i}} \mathbf{J}_{\mathrm{f}} \mathbf{M}_{\mathrm{i}}\right\rangle_{\theta \phi}\right|^{2}
$$

Next we consider selection rules for 2 factors in this equation.

$$
\vec{\mu}=\mathrm{e} \overrightarrow{\mathrm{r}} \text { is odd with respect to } \mathbf{i}
$$

Body-fixed inversion: i [not LAB inversion: I] which defines parity in atoms
$\mathbf{i} \Phi_{i}(\mathrm{r} ; \mathrm{R}) \neq \pm \Phi_{\mathrm{i}}(\mathrm{r} ; \mathrm{R}) \quad$ (i on total wavefunction)

** no pure rotation spectrum for homonuclear $\quad \mathrm{M}_{\mathrm{ii}}(\mathrm{R})=0$
** yes pure rotation spectrum for heteronuclear $\quad \mathrm{M}_{\mathrm{ii}}(\mathrm{R}) \neq 0$

This means that $\mathrm{M}_{\mathrm{x}, \mathrm{i}}=\mathrm{M}_{\mathrm{y}, \mathrm{ii}}=0$ for all diatomic molecules.
So, for diatomic molecule we have only one non-zero component of $\vec{M}(R)$ (unless homonuclear).
Expand in power The Dipole Moment Function (Permanent) series about R_{e} (or some other convenient point)

$$
M_{z, i i}(R)=M_{z, i i}\left(R_{e}\right)+\left.\frac{d M}{d R}\right|_{R=R_{e}} \underbrace{\left(R-R_{e}\right)}_{Q}+\frac{1}{2} \frac{d^{2} M}{d R^{2}} \underbrace{\left(R-R_{e}\right)^{2}}_{Q^{2}}
$$

Now we can take vibrational matrix elements.

$$
\left\langle v_{i}\right| M_{z, i i}(R)\left|v_{i}\right\rangle_{R}=\underbrace{M_{z, i i}\left(R_{e}\right)}_{\begin{array}{c}
\text { permanent dipole } \\
\text { at } R_{e}
\end{array}}+\left.\frac{d M}{d Q}\right|_{Q=0}\left(Q_{v_{i} v_{i}}\right)+\frac{1}{2} \frac{d^{2} M}{d Q^{2}}\left(Q^{2}\right)_{v_{i} v_{i}}
$$

\mathbf{Q} and \mathbf{Q}^{2} matrix elements are trivial in Harmonic Oscillator Basis Set.
$\langle v| Q|v\rangle=0$
$\langle\mathrm{v}| \mathrm{Q}^{2}|\mathrm{v}\rangle=\frac{\hbar}{\mu \omega}(\mathrm{v}+1 / 2)$
So this tells us that $\quad *$ pure rotation $\propto\left|M_{z, \mathrm{ii}}\left(\mathrm{R}_{\mathrm{e}}\right)\right|^{2}$

* varies negligibly with v (intensity \approx const. + small v^{2} term)
* present treatment ignores J-dependence of $\mathrm{V}_{\mathrm{ij},}(\mathrm{R}) \rightarrow \chi_{\mathrm{i}, \mathrm{v}, \mathrm{J}}$ - usually negligible

