MIT OpenCourseWare
http://ocw.mit.edu

### 5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Lecture \#7: How to Assign an Atomic Spectrum

Finding lists "sensitive lines" all lines in order of $\mathrm{cm}^{-1}$ high accuracy helps!

* never trivial
* always know when it's right

No prior information?
predict what you expect

Carrier
which atom?
which ionization state? experimental conditions
how violent?
absorption vs. emission
Getting Started
list all expected lowest-lying configurations, $\sim$ two for each parity $\left(-1^{\sum \ell_{\mathrm{i}}}\right)$
e.g. $\mathrm{Ti} \quad 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2} \quad$ even parity
$4 \mathrm{~s} 3 \mathrm{~d}^{3} \quad$ even parity
$4 \mathrm{~s} 3 \mathrm{~d}^{2} 4 \mathrm{p} \quad$ odd parity
$3 d^{3} 4 \mathrm{p} \quad$ odd parity
list the $\mathrm{L}-\mathrm{S}-\mathrm{J}$ or $\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)_{\mathrm{J}}$ terms that arise from each configuration and estimate their energies based on estimates of $\zeta(\mathrm{n} \ell), \mathrm{F}^{\mathrm{k}}\left(\mathrm{n} \ell, \mathrm{n}^{\prime} \ell^{\prime}\right), \mathrm{G}^{\mathrm{k}}\left(\mathrm{n} \ell, \mathrm{n}^{\prime} \ell^{\prime}\right)$ values from isoelectronic comparisons or shrewd guesses
set up Grotrian diagram organized according to rigorous (parity) and approximate symmetries
e.g (L,S)

even parity
singlet
${ }^{1} \mathrm{~S}^{1} \mathrm{P} \ldots$
$-1^{\sum \ell_{i}} \downarrow$
$\square$
$\square$ $\underset{\text { odd }}{\text { triplet }}$
${ }^{3} \mathrm{~S}^{\circ}{ }^{3} \mathrm{P}^{\circ} \ldots$$\quad$ etc.

## SEE GROTRIAN DIAGRAM FOR Ca (next page)

only can see odd $\leftrightarrow$ even transitions between configurations (entire configuration is odd or even) mostly $\Delta \mathrm{S}=0$
$\Delta \ell= \pm 1 \quad$ (single orbital promotion)
$\Delta \mathrm{L}=0, \pm 1$
$\Delta \mathrm{J}=0, \pm 1$
Key features
$\Delta \mathrm{J}=\Delta \mathrm{L}$ strongest in a multiplet (after correcting for $2 \mathrm{~J}+1$ degeneracy of initial state) (intensity provides clues to both $\Delta \mathrm{J}$ and J assignments)
Rydberg series - nearly constant $\delta_{\ell}$ (quantum defect)
cluster of lines - multiplets - repeated intervals and Landé Interval rule
extremely strong lines - "resonance lines"
see Grotrian
diagram
again $\left\{\begin{array}{l}\text { "population funnels" in emission } \\ \text { excitation out of lowest state } \\ \text { (ground state or a metastable state) }\end{array}\right.$

See Herzberg "Atoms" pages 177-181 The Interval Rule; Analysis of Multiplets

Figure removed due to copyright restrictions. Please see: Fig. 31 in Herzberg, G. Atomic Sprectra and Atomic Structure. New York, NY: Dover, 1944.

Figure removed due to copyright restrictions. Please see: Fig. 32 in Herzberg, G. Atomic Sprectra and Atomic Structure. New York, NY: Dover, 1944.

## TWO LINKED MULTIPLETS



3 (strong) + 4 (weak) lines
$\left.\begin{array}{ll}\mathrm{a}-\mathbf{b}=\mathbf{d}-\mathrm{c} \\ \mathbf{g}-\mathrm{f}=\mathrm{e}-\mathbf{d} \\ \mathbf{b u p p e r}{ }^{3} \mathrm{P}_{1,0} \\ \text { upper }{ }^{3} \mathrm{P}_{2,1} \\ \mathbf{d}-\mathrm{c}=\mathrm{a}-\mathbf{b}=\mathrm{e}-\mathbf{g} & \text { lower }{ }^{3} \mathrm{P}_{1,0} \\ \text { strongest bold } & \text { lower }{ }^{3} \mathrm{P}_{2,1}\end{array}\right\}$

3 (strong) +2 (weak) +1 (very weak) lines EXACTLY
REPEATED
INTERVALS

$$
\begin{cases}\mathbf{f}-\mathrm{e} & \text { upper }{ }^{3} \mathrm{D}_{3,2} \\ \mathbf{e}-\mathrm{d}=\mathbf{c}-\mathrm{b} & \text { upper }{ }^{3} \mathrm{D}_{2,1} \\ \mathbf{c}-\mathrm{e}=\mathbf{b}-\mathrm{d} & \text { lower }{ }^{3} \mathrm{P}_{2,1} \\ \mathrm{~b}-\mathbf{a} & \text { lower }{ }^{3} \mathrm{P}_{1,0}\end{cases}
$$

two intervals not redundantly sampled!

Multiplet Arrays

| ${ }^{3} \mathrm{P}-{ }^{3} \mathrm{P}{ }^{\circ}$ |  |  |
| :---: | :---: | :---: |
| a | (a-b) | b |
| (a-d) |  | (a-d) |

${ }^{3} \mathrm{D}-{ }^{3} \mathrm{P}^{\circ}$

| $\underset{(e-g)}{\mathrm{e}}$ | $(\mathrm{e}-\mathrm{d})$ | d | $(\mathrm{a}-\mathrm{b})$ |
| :---: | :---: | :---: | :---: |
| g | $(\mathrm{e}-\mathrm{g})$ | c |  |
| $(\mathrm{e}-\mathrm{d})$ | f |  |  |


|  |  | $c$ | $(e-d)$ | $b$ | $(b-a)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | a |  |  |  |
| f | $(f-e)$ | $(c-e)$ |  | $(c-e)$ |  |
| e | $(e-d)$ | $d$ |  |  |  |

two possibilities for energy order within two linked multiplets to be decided by

* interval rule
* relative intensities
* \# of lines
* monotonic behavior of intervals (also along rows and columns)

Figure removed due to copyright restrictions.
Please see: Fig. 34 in Herzberg, G. Atomic Sprectra and Atomic Structure. New York, NY: Dover, 1944.

Table 16

## Fe I MULTIPLET [LAPORTE (82)]

(Wave-number differences are given in italic type. Numbers in parentheses above the wave numbers of the lines are estimated intensities. Superior letters $a, b, c$, etc., refer to Fig. 6, p. 7 of Atomic Spectra and Atomic Structure by G. Herzberg, Dover, 1944.)

| J | $i$ |  | $i+1$ |  | $i+2$ |  | $i+3$ |  | $i+4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | $\begin{gathered} (40)^{k} \\ 25,966.89 \\ 104.51 \\ (40)^{g} \end{gathered}$ |  | $(60)^{I}$ |  |  |  |  |  |  |
| $k+1$ | $\begin{gathered} 25,862.38 \\ 215.52 \\ (10)^{e} \end{gathered}$ | 168.92 | $\begin{gathered} 26,031.30 \\ 215.53 \\ (60)^{f} \end{gathered}$ |  | $(80)^{k}$ |  |  |  |  |
| $k+2$ | 25,646.86 | 168.91 | $\begin{gathered} 25,815.77 \\ 294.45 \\ (8)^{b} \end{gathered}$ | 257.73 | $\begin{gathered} 26,073.50 \\ 294.45 \\ (60)^{e} \end{gathered}$ |  | (125) ${ }^{\text {l }}$ |  |  |
| $k+3$ |  |  | 25,521.32 | 257.73 | $\begin{gathered} 25,779.05 \\ 411.21 \\ (5)^{a} \end{gathered}$ | 351.30 | $\begin{gathered} 26,130.35 \\ 411.19 \\ (15)^{d} \end{gathered}$ |  | $(200)^{m}$ |
| $k+4$ |  |  |  |  | 25,367.84 | 351.32 | 25,719.16 | 448.50 | 26,167.66 |

How to construct energy level diagram from transition array?

$$
\begin{aligned}
& \mathbf{H}^{\mathrm{SO}} \rightarrow \zeta \mathrm{~L} \cdot \mathrm{~S} \\
& \mathrm{~J}=\mathrm{L}+\mathrm{S} \quad \mathrm{~J}^{2}=\mathrm{L}^{2}+\mathrm{S}^{2}+2 \mathrm{~L} \cdot \mathrm{~S} \\
& \\
& \mathrm{~L} \cdot \mathrm{~S}=\frac{\mathrm{J}^{2}-\mathrm{L}^{2}-\mathrm{S}^{2}}{2} \\
& \\
& \langle\mathrm{~L} \cdot \mathrm{~S}\rangle=\left(\hbar^{2} / 2\right)[\mathrm{J}(\mathrm{~J}+1)-\mathrm{L}(\mathrm{~L}+1)-\mathrm{S}(\mathrm{~S}+1)]
\end{aligned}
$$

Landé interval rule

$$
\mathrm{E}_{\mathrm{L}-\mathrm{S}-\mathrm{J}}-\mathrm{E}_{\mathrm{L}-\mathrm{S}-(\mathrm{J}-1)}=\zeta\left(\hbar^{2} / 2\right)[\mathrm{J}(\mathrm{~J}+1)-(\mathrm{J}-1)(\mathrm{J})] \propto \mathrm{J}_{>}
$$

Largest number of repeated intervals occurs when $\Delta L=0$.
Look for near integer (or $1 / 2$ integer) relationships between repeated intervals. If any grouping is suggested by the interval rule, one sets up a trial level diagram for both states and predicts frequencies of all unlinked transitions.

## YOU STILL CAN'T TELL UP FROM DOWN!

* sometimes predict sign (and magnitude) of $\zeta$ from configuration and $\mathbf{H}^{\text {eff }}$ model
* other linkages - especially to a Rydberg series or to the ground state.

The convergence of a Rydberg series is always in the sense that levels get closer together as E increases and the spin-splitting always decreases as $\mathrm{n}^{*-3}$ (unless the spin-orbit splitting is in the ion-core).

$\qquad$


Rydberg multiplet (smaller spinsplittings)

The nature of the Rydberg series to which a given multiplet is connected by transitions (or to which it belongs) tells us the nominal configuration of that state.

Other tricks for assignment of atomic spectra.

## Temperature

In absorption, signal is $\propto \mathrm{N}_{\mathrm{nLSJ}}$
vary $\quad \mathrm{N}_{\text {nLSJ }}$ by changing T


Absorption lines from excited states are extremely sensitive to T (rapid increase in intensity as T increases).
Absorption lines from ground state decrease in intensity weakly as T increases (at constant total number density).

Isotope


Zeeman Effect - apply magnetic field
Split each J into $2 \mathrm{~J}+1 \mathrm{M}_{\mathrm{J}}$ components


Bernath:

$$
\begin{gathered}
\mathrm{E}_{\mathrm{M}_{\mathrm{J}}}=\left[1+\frac{\mathrm{J}(\mathrm{~J}+1)+\mathrm{S}(\mathrm{~S}+1)+\mathrm{L}(\mathrm{~L}+1)}{2 \mathrm{~J}(\mathrm{~J}+1)}\right] \mu_{\mathrm{B}} \mathrm{M}_{\mathrm{J}} \mathrm{~B} \\
\mathrm{~g}_{\mathrm{J}} \quad \begin{array}{l}
1.4 \mathrm{MHz} / \mathrm{Gauss}(\mathrm{Bohr} \text { magneton) } \\
30000 \mathrm{MHz}=1 \mathrm{~cm}^{-1}
\end{array}
\end{gathered}
$$

Selection Rules: $\Delta \mathrm{M}_{\mathrm{J}}=0 \quad$ linearly polarized along field direction
$\pm 1 \quad$ linearly polarized $\perp$ to field direction +1 or -1 circularly polarized (light propagating along field direction)

Note that the Zeeman splitting pattern is not trivial, but since all M's in upper state are split equally (ditto for lower state), it is easy to determine $\mathrm{g}_{\mathrm{J}}^{\prime}$ and $\mathrm{g}_{\mathrm{J}}^{\prime \prime}$, and from the \# of $\mathrm{M}_{\mathrm{J}}^{\prime}$ and $\mathrm{M}_{\mathrm{J}}^{\prime \prime}$ components, $\mathrm{J}^{\prime} \mathrm{L}^{\prime} \mathrm{S}^{\prime}$ and $\mathrm{J}^{\prime \prime} \mathrm{L}^{\prime \prime} \mathrm{S}^{\prime \prime}$.

```
unless: * mixed L-S character (due to (H)
    * Paschen Back - L,S uncoupling (destruction of J)
    * hfs
```

How high a magnetic field is needed to resolve all Zeeman components so that we can count $\mathrm{M}^{\prime}$ ’s and $\mathrm{M}^{\prime \prime}$ 's (upper and lower state $\mathrm{M}_{\mathrm{J}}$ values)?
$\Delta \mathrm{E}(\mathrm{B})=\Delta \mathrm{E}^{\circ}+\mu \mathrm{B}\left[\mathrm{g}^{\prime} \mathrm{M}^{\prime}-\mathrm{g}^{\prime \prime} \mathrm{M}^{\prime \prime}\right]$
for $\mathrm{M}^{\prime}=\mathrm{M}^{\prime \prime}+1$ transitions ( $\perp$ polarization)
$\left.\left.\Delta E(B)=\Delta E^{\circ}+\underline{\mu B\left[M^{\prime \prime}\left(g^{\prime}-g^{\prime \prime}\right.\right.}\right)+g^{\prime}\right]$
spacing of components
$\mu=1.4 \mathrm{MHz} /$ Gauss $=\frac{1.4}{30000} \mathrm{~cm}^{-1} /$ Gauss
$0.03 \mathrm{~cm}^{-1}$ resolution $=\mu \mathrm{B}_{\text {min }} \Delta \mathrm{g}$
$\mathrm{B}_{\min }=\frac{0.03}{\frac{1.4}{30000} \Delta \mathrm{~g}}=\frac{643}{\Delta \mathrm{~g}}$ Gauss
${ }^{3} \mathrm{D}_{3}-{ }^{3} \mathrm{P}_{2}$
$\Delta \mathrm{g}=\frac{11}{6}-\frac{11}{6}=0$ !
$\Delta \mathrm{J}=\Delta \mathrm{L} \rightarrow \Delta \mathrm{g}=0$ !
${ }^{3} \mathrm{D}_{2}-{ }^{3} \mathrm{P}_{1}$
$\Delta \mathrm{g}=\frac{13}{6}-\frac{5}{2}=-\frac{1}{3} \quad \sim 2 \mathrm{kG}$ required

## Stark Effect

Apply an electric field $\quad \mathbf{H}^{\text {STARK }}=\mu($ odd parity $) \cdot \varepsilon$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{nLSIM}}^{(1)}=\langle\mathrm{nLSJM}| \mathbf{H}^{\text {STARK }}|\mathrm{nLSJM}\rangle=0 \\
& \text { must consider only }\left.\mathrm{E}^{(2)} \propto \varepsilon^{2} \sum \frac{\mid\langle\mathrm{nLSJM}| \mu\left|\mathrm{n}^{\prime} \mathrm{L}^{\prime} \mathrm{S}^{\prime} J^{\prime} \mathrm{M}\right\rangle}{}\right|^{2} \\
& \mathrm{E}_{\mathrm{nLSJM}}^{0}-\mathrm{E}_{\mathrm{n}^{\prime} \mathrm{LS}^{\prime} J^{\prime} \mathrm{M}}
\end{aligned}
$$

too small to be useful, except for Rydberg states where $\Delta \mathrm{E}^{\circ}$ can be very small quenching of metastable states - turning on a forbidden transition

Collisions - big effect on emission spectrum - negligible effect on absorption spectrum
selective $\left\{\begin{array}{l}\text { quenching } \\ \text { excitation }\end{array}\right\}$ across small $\Delta \mathrm{E}$ gap


Long-Lived levels are easily quenched.

