5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Outline of approach:

- 1. list of orbital occupancies e.g. $1s^2 2s^2 2p^2$ "configuration"
- 2. Which L–S terms result?
 - * list all spin-orbitals p: $1 \overline{1} 0 \overline{0} -1 -\overline{1}$ (overbar means $m_s = -1/2$ or " β ")
 - * list all Slater determinants (anti-symmetrized microstates) consistent with Exclusion Principle e.g. $|1\overline{1}| M_{I} = 2 M_{S} = 0$
 - standard order of spin-orbitals (needed to get correct signs of matrix elements)
 - * Classify Slaters according to M_L and M_S
 - * Method of crossing out of microstates: M_L , M_S ranges for each L–S term ($p^3 \rightarrow {}^4S$, 2D , 2P)

* Total degeneracy of a configuration $\left(p^3: \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20\right)$

- 3. Find the linear combinations of Slaters that are eigenstates in either representation: $|LM_LSM_S\rangle$ OR $|LSJM_J\rangle$ These cause \mathbf{H}^{eff} to be block diagonalized.
- 4. Compute matrix elements of $\widehat{\mathbf{H}}$ in selected basis set.

*
$$\widehat{\mathbf{H}}^{\text{SO}} = \sum_{\mathbf{i} > \mathbf{j}} \xi(\mathbf{r}_{\mathbf{i}})\ell_{\mathbf{i}} \cdot \mathbf{s}_{\mathbf{i}}$$
 ME of $1e^{-}$ operator $\rightarrow \sum_{\mathbf{n}\ell} z_{\mathbf{n}\ell} \zeta(\mathbf{n}\ell)$
* $\widehat{\mathbf{H}}^{\text{ee}} = \sum_{\mathbf{i} > \mathbf{j}} e^{2}/\mathbf{r}_{\mathbf{i}\mathbf{j}}$ ME of $2e^{-}$ operator $\rightarrow \sum_{\mathbf{k},\mathbf{n}\ell,\mathbf{n}'\ell'} \left[f_{\mathbf{k}}F^{\mathbf{k}}(\mathbf{n}\ell,\mathbf{n}'\ell') + g_{\mathbf{k}}G^{\mathbf{k}}(\mathbf{n}\ell,\mathbf{n}'\ell') \right]$

 \mathbf{H}^{eff} expressed in terms of fit parameters: orbital energy ϵ

	$\mathcal{O}\mathcal{I}$	
spin-orbit		ζ
direct		\mathbf{F}^{k}
exchange		G^k

 $\epsilon, \zeta, F^k, G^k$ orbital radial integrals \leftrightarrow fit parameters

 $z_{n\ell}$, f_k , g_k are exactly calculable ANGULAR INTEGRALS

Would take 2 or 3 lectures to explain how to compute:

* 1e⁻ and 2e⁻ operator matrix elements of Slater determinants

(see Group Theory and Quantum Mechanics, M. Tinkham, pp. 154-188)

My goal here is to expose you to the atomic \mathbf{H}^{eff} models.

Often the relevant $1/r_{ij}$ and spin-orbit matrices can be found in a book like Condon and Shortley. Read Tinkham pages 154-188 for methods of evaluating these matrix elements yourselves.

Examine the n = 3 and n = 2 levels of H atom explicitly and compare against the observed spectrum.

$n = 2$ can have $\ell = 0$ and 1					n = 3 has $l = 0, 1, 2$		
			j = 1/2	j = 1/2 and 3/2			v = 5/2, 3/2
n	ℓ	j	S	E°/hc	H ^{so} /hc		
2	0	1/2	1/2	-27419.396	-0.457		27419.853
2	1	1/2	1/2	-27419.396	-0.457		-
2	1	3/2	1/2	-27419.396	-0.091	0.366	27419.853
							27117.107
3	0	1/2	1/2	-12186.398	-0.162		-
3	1	1/2	1/2	-12186.398	-0.162		12186.560
3	1	3/2	1/2	-12186.398	-0.054	0.108	12186.560
-	-						12186.452
3	2	3/2	1/2	-12186.398	-0.054		
3	2	5/2	1/2	-12186.398	-0.018	0.036	
							12186.416

See Figures Energy Level Diagram Spectrum (Theoretical from C & S)

Compare $2^{2}P_{3/2} - 2^{2}P_{1/2}$ energy level splitting for hydrogenic systems vs. Z

 $\begin{array}{ll} H \ I & 0.366 \ cm^{-1} \\ Li \ III & 30 \ cm^{-1} \\ Na \ XI & 5400 \ cm^{-1} \end{array}$

Energy level Diagram for $H_I n=3$ and n = 2

parity selection rule $\rightarrow \Delta \ell = \pm 1$ vector coupling $\Delta \ell = \Delta j$ favored (propensity rule, solid lines a, c, d, g) Image of *The Theory of Atomic Spectra* by E. U. Condonand G. H. Shortley removed due to copyright restrictions. Figure removed due to copyright restrictions. Please see: Fig. 35 in Condon, E. E., and G. H. Shortley. *The Theory of Atomic Spectra*. Cambridge, UK. Cambridge University Press, 1951.

This illustrates the spin-orbit fine structure of the H atom $n = 3 \leftarrow n = 2$ spectrum. Transitions are labeled (*a*)–(*g*) following the table on the previous page. The lengths of the lines represent the calculated relative intensities (assuming equal populations in all m_i components of the n = 2 levels).

Orbital-Based Periodic Correlations: what do we look at to see the correlations? Lowest L–S–J state? Center of gravity of entire configuration?

	Degeneracy		
d^1	10	2 D	$d^9 (2L+1)(2S+1) = 10$
d^2	$\frac{10.9}{2} = 45$	¹ G, ³ F, ¹ D, ³ P, ¹ S	d ⁸
d ³	$\frac{10.9.8}{2.3} = 120$	² H, ² G, ⁴ F, ² F, ² D, ² D, ⁴ P, ² P	d^7
d^4	$\frac{10.9.8.7}{2.3.4} = 210$	incredible	d^6
d ⁵	$\frac{10.9 \cdot 8 \cdot 7 \cdot 6}{2 \cdot 3 \cdot 4 \cdot 5} = 224$	unbelievable	d ⁵

Yet all is given by $\zeta(nd)$, F^0 , F^2 , F^4 (no G^k 's for p^2 or any set of identical $n\ell$ orbitals) Massively complicated spectra for 3d series.

No corresponding states for $3d^N \rightarrow 3d^{N+1}$

Magic decoder is ζ , F⁰, F², F⁴ in effective Hamiltonian.

We know how each of these parameters should scale

vs. Z for isoelectronic series or across row as $Z \rightarrow Z + 1$, or as $N \rightarrow N + 1$ vs. n for Rydberg series

Example $\zeta(3d)$ for $3d^{N}4s^{2}$ of Sc \rightarrow Cu Goes as Z_{eff}^{4} (imperfect shielding of one 3d by others) as Z increases. The plot of $\zeta(LS)$ is for the lowest L–S term (MAX S, MAX L) (Hund's rules) Figure removed due to copyright restrictions. Please see: Figure 6-2 in Moore, C. E. "Atomic Energy Levels." *Natl Bur Standards, Circ* 467. [Vols. I (1949) ; Vol II. (1951)]. $\leftarrow \text{ property of 3d orbital} \\ \left(Z_{3d}^{\text{eff}}\right)^4 \text{ scaling. } Z^{\text{eff}} \text{ increases} \\ \text{in steps of 0.8.} \end{aligned}$

 $\leftarrow \text{ property of lowest L-S} \\ \text{term of } (3d)^{\times}(4s)_2 \\ \text{configuration. No scaling.} \\ \text{Hund's } 3^{\text{rd}} \text{ Rule.} \\$

 p^2 Example LS \rightarrow jj Coupling

 p^2 configuration \rightarrow 1D_2 , $^3P_{2,1,0}$, 1S_0

See Condon and Shortley, pages 198, 268, 274-5, 294

The Russell-Saunders Case: Energy Levels removed due to copyright restrictions.

$$\mathbf{H}^{ee}(\mathbf{p}^{2}) = {}^{3}\mathbf{P}_{2} \begin{pmatrix} \mathbf{F}_{0} + 10\mathbf{F}_{2} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{F}_{0} + \mathbf{F}_{2} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{F}_{0} - 5\mathbf{F}_{2} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{F}_{0} - 5\mathbf{F}_{2} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{F}_{0} - 5\mathbf{F}_{2} \end{pmatrix}$$

$$\mathbf{H}^{ee}(\mathbf{p}^{2}) = {}^{3}\mathbf{P}_{1}^{\mathbf{J}} = \mathbf{I} \begin{pmatrix} 0 & -2^{1/2} & 0 & 0 & 0 \\ -2^{1/2} & -1 & 0 & 0 & 0 \\ 0 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 2^{-1/2} \\ 0 & 0 & 0 & 2^{-1/2} \\ 0 & 0 & 0 & 2^{-1/2} \\ 0 & 0 & 0 & 2^{-1/2} \\ 2^{-1/2} & 1/2 \end{pmatrix} \zeta(\mathbf{np})$$

$$5 \times 5 \text{ is fully diagonal}$$

Add $\mathbf{H}^{ee} + \mathbf{H}^{SO}$ to get secular equations for J = 2, 1, 0. These matrices were evaluated in L–S–J basis set. Could have used LM_LSM_s. More work, same results.

To get secular equations into most convenient form

* subtract out center of gravity (C of G)

* put 2 × 2 into form
$$\begin{pmatrix} \frac{\Delta}{2} - E & V \\ V & \frac{-\Delta}{2} - E \end{pmatrix} = 0$$

Eigenvalues $E_{\pm} = \pm [\Delta^2/4 + V^2]^{1/2}$

$$J = 0 \quad {}^{1}S_{0} \begin{pmatrix} F_{o} + 10F_{2} & -2^{1/2}\zeta \\ -2^{1/2}\zeta & F_{o} - 5F_{2} - \zeta \end{pmatrix} = \begin{bmatrix} F_{o} + \frac{5}{2}F_{2} - \frac{1}{2}\zeta \end{bmatrix} + \begin{pmatrix} \frac{15}{2}F_{2} + \frac{1}{2}\zeta & -2^{1/2}\zeta \\ sym & \frac{-15}{2}F_{2} - \frac{1}{2}\zeta \end{bmatrix}$$

So $E_{\pm}(J = 0) = F_{0} + \frac{5}{2}F_{2} - \frac{1}{2}\zeta \pm \begin{bmatrix} \frac{225}{4}F_{2}^{2} + \frac{15}{2}F_{2}\zeta + \frac{1}{4}\zeta^{2} + 2\zeta^{2} \end{bmatrix}^{1/2}$

$$J = 1 \quad E(J = 1) = F_0 - 5F_2 - \zeta/2$$

$$J = 2 \quad {}^{1}D_{2} \begin{pmatrix} F_{0} + F_{2} & 2^{-1/2}\zeta \\ 2^{-1/2}\zeta & F_{0} - 5F_{2} + \frac{1}{2}\zeta \end{pmatrix} = F_{0} - 2F_{2} + \frac{1}{4}\zeta + \begin{pmatrix} 3F_{2} - \frac{1}{4}\zeta & 2^{-1/2}\zeta \\ 2^{-1/2}\zeta & -3F_{2} + \frac{1}{4}\zeta \end{pmatrix}$$
$$E_{\pm}(J = 2) = F_{0} - 2F_{2} + \frac{1}{4}\zeta \pm \left[9F_{2}^{2} - \frac{3}{2}F_{2}\zeta + \frac{1}{16}\zeta^{2} + \frac{1}{2}\zeta^{2}\right]^{1/2}$$

Note that these matrices have ζ off-diagonal and ΔE° differences that are dominated by F₂.

There are two convenient limits for intraconfigurational energy level patterns. For p²:

Be sure that total degeneracy of all states is the same in both limits.

possible values for j_1 and j_2 for $p \rightarrow \ell = 1$, s = 1/2 are 3/2 and 1/2

total degeneracy	(j_1, j_2) (3/2, 3/2)	pos:	sible values of J exclusion principle
$\frac{4\times3}{2}$		2 \times 0	exclusion NOT OBVIOUS
4×2 ←	(3/2, 1/2)	2	
$\frac{2 \cdot 1}{2}$	(1/2, 1/2)	X	exclusion

 $LS \rightarrow (j, j')_J$ Coupling Patterns

See Condon and Shortley, pages 274-5, plotted on scale to keep $E_{MAX} - E_{MIN}$ = constant.

 $\begin{array}{c} & \mathbf{p}^{2} \text{ Matrix in L-S-J BASIS SET} \\ {}^{1}S_{0} \begin{pmatrix} F_{0} + 10F_{2} & -2^{1/2}\zeta \\ {}^{3}P_{0} \\ {}^{3}P_{1} \\ {}^{1}S_{0} \end{pmatrix} \begin{bmatrix} F_{0} - 2^{1/2}\zeta & F_{0} - 5F_{2} - \zeta \\ {}^{3}P_{1} \\ {}^{1}S_{0} \end{bmatrix}$ $\begin{array}{ccc} F_0 + F_2 & 2^{-1/2} \zeta \\ 2^{-1/2} \zeta & F_0 - 5F_2 + \zeta / 2 \end{array}$ ${}^{1}D_{2}$ ${}^{3}P_{2}$

Perturbation Theory in $\zeta/F_{2}\ll\,1$ limit

$${}^{1}S_{0} = E_{1_{S}}^{o} + \frac{2\zeta^{2}}{15F_{2} + \zeta}$$

$${}^{3}P_{0} = E_{3_{P}}^{o} - \zeta - \frac{2\zeta^{2}}{15F_{2} + \zeta}$$

$${}^{3}P_{1} = E_{3_{P}}^{o} - \zeta/2$$

$${}^{3}P_{2} = E_{3_{P}}^{o} + \zeta/2 + \frac{\zeta^{2}/2}{6F_{2} - \zeta/2}$$
negligible
Landé
Interval Rule
Perturbation Theory works when $\left| \frac{\mathbf{H}'_{ij}}{E_{i}^{o} - E_{j}^{o}} \right|$. Thus, our L–S–J basis set matrix for **H** is suitable for perturbation theory if
$$\left| \frac{2^{1/2}\zeta}{E_{i}^{o} - E_{j}^{o}} \right|$$
 and $\left| \frac{2^{-1/2}\zeta}{E_{i}^{o} - E_{j}^{o}} \right|$ are $\ll 1$

$$\begin{vmatrix} \frac{2^{-2}\zeta}{15F_2 + \zeta} \end{vmatrix} \quad \text{and} \quad \begin{vmatrix} \frac{2^{-12}\zeta}{6F_2 - \zeta/2} \end{vmatrix} \quad \text{are} \ll 1$$
$$J = 0 \qquad \qquad J = 2 \qquad (i.e. \ \zeta \ll F_2)$$

Alternatively, we can transform to the jj basis set using the transformation given on page 294 of Condon and Shortley.

$$(3/2,3/2)_{2} = \left(\frac{2}{3}\right)^{1/2} {}^{3}P_{2} + \left(\frac{1}{3}\right)^{1/2} {}^{1}D_{2}$$
$$(3/2,1/2)_{2} = \left(\frac{1}{3}\right)^{1/2} {}^{3}P_{2} - \left(\frac{2}{3}\right)^{1/2} {}^{1}D_{2}$$
$$(3/2,1/2)_{1} = {}^{3}P_{1}$$
$$(3/2,3/2)_{0} = \left(\frac{2}{3}\right)^{1/2} {}^{1}S_{0} - \left(\frac{1}{3}\right)^{1/2} {}^{3}P_{0}$$
$$(1/2,1/2)_{0} = \left(\frac{1}{3}\right)^{1/2} {}^{1}S_{0} + \left(\frac{2}{3}\right)^{1/2} {}^{3}P_{0}$$

And the matrices are given by

$$\mathbf{H}_{(3/2,3/2)_{2},(3/2,3/2)_{2}} = \frac{2}{3}\mathbf{H}_{3P_{2}^{3}P_{2}} + \frac{1}{3}\mathbf{H}_{1D_{2}^{1}D_{2}} + \frac{2\cdot2^{1/2}}{3}\mathbf{H}_{3P_{2}^{1}D_{2}}$$
$$\mathbf{H}_{(3/2,1/2)_{2},(3/2,1/2)_{2}} = \frac{1}{3}\mathbf{H}_{3P_{2}^{3}P_{2}} + \frac{2}{3}\mathbf{H}_{1D_{2}^{1}D_{2}} - \frac{2\cdot2^{1/2}}{3}\mathbf{H}_{3P_{2}^{1}D_{2}}$$
$$\mathbf{H}_{(3/2,3/2)_{2},(3/2,1/2)_{2}} = \frac{\sqrt{2}}{3}\mathbf{H}_{3P_{2}^{3}P_{2}} - \frac{\sqrt{2}}{3}\mathbf{H}_{1D_{2}^{1}D_{2}} - \frac{1}{3}\mathbf{H}_{3P_{2}^{1}D_{2}}$$

MATRICES TRANSFORMED TO $\boldsymbol{j}_1 - \boldsymbol{j}_2 - \boldsymbol{J}$ BASIS SET

$$\mathbf{H} (\mathbf{J} = 2) = \begin{pmatrix} -3F_2 + \zeta & -2^{3/2}F_2 \\ -2^{3/2}F_2 & -F_2 - \frac{1}{2}\zeta \end{pmatrix} \quad (3/2, 3/2)_2 \\ \mathbf{H} (\mathbf{J} = 1) = & -5F_2 - \zeta/2 & (3/2, 1/2)_1 \\ \mathbf{H} (\mathbf{J} = 0) = & \begin{pmatrix} 5F_2 + \zeta & 5\sqrt{2}F_2 \\ 5\sqrt{2}F_2 & -2\zeta \end{pmatrix} & (3/2, 3/2)_0 \\ (3/2, 1/2)_0 \end{pmatrix}$$

Goes to limiting j–j pattern when $F_2 \rightarrow 0$.

Note: ζ is off-diagonal in L–S–J basis F_2 is off-diagonal in j–j–J basis

This is an example of the battle between two terms in \mathbf{H}^{eff} .

Suggested homework problem: repeat all of the steps in pages 5-11 for the d^2 configuration. Use tables in Condon and Shortley.

Transitions $p^2 \leftarrow sp$

predictable from mixing coefficients

 $\Delta \ell = \pm 1$ $\Delta J = \Delta L$ strong $\Delta S = 0$

 $\Delta J = \Delta j_2$ strong

Figure removed due to copyright restrictions. Please see: Pages 274-275 in Condon, E. E., and G. H. Shortley. *The Theory of Atomic Spectra*. Cambridge, UK: Cambridge University Press, 1951. Table of matrices of spin-orbit interaction removed due to copyright restrictions.

Transformations in the theory of complex spectra text removed due to copyright restrictions.