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1. Anharmonic Oscillator, Vibration-Rotation Interaction 

The Hamiltonian is 
P2 k J2 

H = R + x2 +ax3 + (1.1)
2µ 2 2µR2 � �� � � �� � 

harmonic oscillator non−rigid rotor 

First we must re-express R
1 
2 in terms of a quantity whose matrix elements we know such as the displacement x. 

x = R − Re 

x 
R = Re + x = Re 1 + (1.2)

Re� � � � �2 
� 

1 1 x x 
R2 

≈ 
R2 

e 
1 − 2 

Re 
+ 3 

Re 
power series expansion (1.3) 

where we truncate expansion after (x/Re)2 . 
The Hamiltonian operator becomes 

P2 k J2 2x 3x2 

H =
2µ 

R +
2 
x2 + ax3 +

2µR2 
e 

1 − 
Re 

+ 
Re 

2 
(1.4) 

Let us choose a basis {|v� |J�} where |v� is the harmonic oscillator basis and |J� is the rigid rotor basis. The rotational 
matrix elements we need are 

J |J2|J � = J(J + 1)δJJ � (1.5) 

�J |constant|J �� = δJJ � constant (1.6) 

�J |vibr.coord.|J �� = δJJ � vibr.coord. (1.7) 

�2 

and Be (in energy units) = J. (1.8)
2µRe 

2 

1 
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Thus the rotational expectation values of the Eq.(1) Hamiltonian become 

H
P2 

+ 
k 
x2 + ax3 + BeJ(J + 1) 

2x 
+

6µBe x2 (1.9)�J | |J� =
2µ 2

1 − 
Re �2 

where 1 was replaced by 2µBe .R2 �2 
e 

Now we need some x matrix elements. Let 
√

kµ k 
γ = hν = �ω = (1.10)

� γ � �1/2 
v + 1 

xv,v+1 = (1.11)
2γ 

1 
xv,v

2 
+2 = [(v + 1)(v + 2)]1/2 (1.12)

2γ 

v + 1 

x 2 = 2 (1.13)v,v γ 

x 3 = 

� 
(v + 1)(v + 2)(v + 3) 

�1/2 

(1.14)v,v+3 8γ3 � �3/2 
v + 1 

xv,v
3 

+1 = 3 (1.15)
2γ 

Remember that the harmonic oscillator part of our Hamiltonian is diagonal in the harmonic oscillator basis we have 

chosen. 

1 3 2 6µBe 2�vJ |H|v�J �� = hν v +
2 

δJJ � δvv� + axvv� δjj� + BeJ(J + 1) δvv� δJJ � − 
Re 

xvv� δJJ � + 
�2 

xvv� δJJ � (1.16) 

Note that the Hamiltonian matrix is completely diagonal in J. 
The remaining problem is how to arrange the H matrix now that we have two indices J and v. The Hamiltonian 

matrix is a super-matrix consisting of a v, v� matrix of J , J � matrices. However, since there are no matrix elements 
off-diagonal in J , it is convenient to alter our perspective and think of a set of single v, v� matrices, one for each 

value of J . Thus the Hamiltonian matrix is given by 

�v|H|v� = hν v +
1
2 

+ BeJ(J + 1) + Be 
2 

γ

6
�
µ 
2 

v + 
1
2 

J(J + 1) (1.17) � �3/2 � �1/2 
v + 1 2Be v + 1 �v|H|v + 1� = 3a 
2γ 

− 
Re 2γ

J(J + 1) (1.18) � �3/2 � �1/2 

�v|H|v − 1� = 3a 
2
v

γ 
− 

2
R

B

e

e 

2
v

γ 
J(J + 1) (18a) 

�v|H|v + 2� = 3
γ

B

�
e 
2

2 

µ
J(J + 1)[(v + 1)(v + 2)]1/2 (1.19) 

�v|H|v − 2� = 3
γ

B

�
e 
2

2 

µ
J(J + 1)[(v − 1)v]1/2 (19a) � �1/2(v + 1)(v + 2)(v + 3) �v|H|v + 3� = a 

8γ3 
(1.20) � 

v(v − 1)(v − 2) 
�1/2 

�v|H|v − 3� = a 
8γ3 

(20a) 
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We are now in a position to use perturbation theory to determine the contributions of the various terms in the 

Hamiltonian to the eigenvalues. Note that when faced with an infinite Hamiltonian matrix it will always be necessary 

to use the Van Vleck transformation in order to truncate the matrix. We act as if part of the matrix isn’t there, yet 
we know that the Van Vleck transformed energies will be a very good approximation to the eigenvalues of the infinite 

matrix. In this example, the matrix will be treated entirely by first and second order perturbation theory and no 

diagonalization will be carried out. For our choice of basis, the zero-order Hamiltonian is diagonal by definition. 

� � � � (0)H(0) = hν v + 12 + BeJ(J + 1) δJJ � δvv� = EvJ (1.21) 

The perturbation terms are what is left over 

2Be 6µB2 

H(1) 3 e 2= ax − 
Re 

J(J + 1)x + 
�2 

J(J + 1)x δJJ � (1.22) 

The first order corrections to the energy are given by 

H(1)
� 
v, J | |v, J 

� 
= Be 

2 

γ

6
�
µ 
2 

� 

v + 
1
2 

� 

J(J + 1) (1.23) 

µ 1but γ�2 = hν . 
Thus 

eE(1) = 6B2 � 
v + 1 

� 
J(J + 1) (1.24)hν 2 

This is a harmonic vibrational correction to the rotational constant. Compare with the leading term in Dunham’s 
expression for Y11 ∼ −αe. 

Note that this term causes B(v) to increase as v increases. This is puzzling because everyone knows that B(v) 
decreases for real diatomics. 

The second order corrections are � � � � 
= 
� v, J |H(1)|v�, J v�, J |H(1)|v, J 

(1.25)E(2) 
(0) (0) 

v�=� v E(v,J) − E(v�,J) 

Note that for each of the three allowed off-diagonal matrix elements of equations 18-20, there will be two nonzero 

terms in the summation over v�. 
From the �v|H|v ± 3� matrix elements we get 

E
(2) = 

a2 v(v − 1)(v − 2) − (v + 1)(v + 2)(v + 3) 
(1.26)±3 3hν 8γ3 

2 
(2) a

E±3 = − 
8γ3hν 

[(3v 2 + 3v + 2)] (1.27) 

(0) (0)The 3hν in the denominator of (26) comes from Ev,J − Ev±3,J . From the �v|H|v ± 2� matrix elements we get 

(2) 9Be 
4µ2 J2(J + 1)2 

E±2 = 
γ2�4 2hν 

[(v − 1)v − (v + 1)(v + 2)] 

9B4µ2J2(J + 1)2 18B4J2(J + 1)2 v + 1 
(2) e e 2E±2 = − 

γ2�4 hν 
[2v + 1] = − 

(hν)3 
(1.28) 

· 
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This is a harmonic vibrational correction term to a centrifugal distortion constant. This will not agree with Dunham’s 
result because we only kept terms in the expansion of B in powers of x through the second power. This second Re 

x . Terms in the B expansion through Re 
order correction to the energy is actually a 2 × 2 = 4th power correction in� �4 

x also contribute. Re 

From the �v|H|v ± 1� matrix elements we obtain 

(2) 9a2(v3 − (v + 1)3) 4Be 
2J2(J + 1)2[v − (v + 1)] 12aBeJ(J + 1)[v2 − (v + 1)2]

E =	 +±1 (2γ)3hν	 2γRe 
2hν 

− 
Re(2γ)2hν �	 � � � � � 

(2) 9 a2	 2Be 
2J2(J + 1)2 a BeJ(J + 1) v + 2

1 

E±1 = − 
8 hνγ3 

(3v 2 + 3v + 1) − 
γRe 

2hν 
+ 6 

hνγ2 Re	
(1.29) 

The first term of (29) should be added to a similar term which occurs in equation (27). The sum will be the first 
term in equation (30) below. The second term may be simplified using 

µ 1 1 Be2µ
= and = 

γ�2 hν R2 �2 
e 

egiving − 4B3J2(J+1)2 

which should be compared with Dunham’s Y02.(hν)2 

This term is the harmonic oscillator contribution to the centrifugal distortion constant. 
In summary 

E(2) 
� 

a 2 
� � 

15 
� �� 

v + 1 
�2 + 7 

� 
+ 
� 

a 
� 

6BeJ(J+1)(v+ 12 ) 4Be 
3J2(J+1)2 18Be 

4 J2(J+1)2(v+ 12 ) (1.30)= −	 hνγ3 4 2 60 hνγ2 Re 
− (hν)2 − (hν)3 

The first term is an anharmonic contribution to ωexe 
� 
v + 12 

�2 and to the zero point energy. In fact, this is why ωexe 

is called the anharmonicity constant. 
The second term is an anharmonic correction to the rotational energy. Note that this correction is of the same 

sign as the harmonic correction we obtained in first-order in equation (24). B = Be − αe v + 12 . However the sign 

of a is negative for realistic potential curves. 
If |a| is large enough, the negative anharmonic contribution to αe will be larger than the positive harmonic 

contribution and B(v) will decrease as v increases. 
The third term is the harmonic contribution to centrifugal distortion. EJ = BJ(J + 1) − DJ2(J + 1)2 . 
The fourth term is a harmonic vibrational correction to the centrifugal distortion constant D = De − βe v + 1 .2 

2.	 Energy Levels of a Vibrating Rotor: 
Dunham’s Expression for E(v, J) Derived from E(r) 

Following is an excerpt from Microwave Spectroscopy by C. Townes and A. Schawlow, pages 9–11, which describes 
the results of Dunham’s inversion of the potential energy, V (r), expressed as a power series in the dimensionless 
displacement coordinate ξ, into a power series in the rotational and vibrational quantum numbers, J(J + 1) and 

(v + 1/2). The Rydberg-Klein-Rees procedure is exactly the reverse of this, converting E(v, J) into V (r). 

Dunham’s Solution for Energy Levels 

Dunham1 has calculated the energy levels of a vibrating rotor, by a Wentzel-Kramers-Brillouin method, 
for any potential which can be expanded as a series of powers of (r − re) in the neighborhood of the 

potential minimum. This treatment shows that the energy levels can be written in the form 
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� � 
1
�� 

EvJ = Y�j v + Jj (J + 1)j (2.1)
2 

�,j 

where � and j are summation indices, v and J are, respectively, vibrational and rotational quantum 

numbers, and Y�j are coefficients which depend on molecular constants. The effective potential function 

of the vibrating rotor may be written in the form 

U = a0ξ
2(i + a1ξ + a2ξ

2 + . . . ) + BeJ(J + 1)(1 − 2ξ + 3ξ2 − 4ξ3 + . . . ) (2.2) 

where ξ = (r − re)/re, Be = h/8π2µre 
2 . The term involving BeJ(J + 1) allows for the influence of the 

rotation on the effective potential. 

Examination of the Harmonic Oscillator part of the potential energy, U, will give a value for a0. 

U = 1/2k(r − re)2 = 2π2µωe 
2(r − re)2 = 2π2µωe 

2ξ2 re 
2 

h hω2 
eif Be ≡ 

8π2µre 
2 

then U =
4Be 

ξ2 

ω2 

∴ a0 = h e 

4Be 

Dunham1 shows that the first 15 Yli’s are ⎫ 
Y00 = Be/8(3a2 − 7a 21/4) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Y10 = ωe[1 + (Be 
2/4ωe 

2)(25a4 − 95a1a3/2 − 67a2
2/4 

+ 459a1
2 a2/8 − 1155a1

4/64)] 

Y20 = (Be/2)[3(a2 − 5a 21/4) + (B2/2ωe 
2)(245a6 − 1365a1a5/2e 

− 885a2a4/2 − 1085a3
2/4 + 8535a1

2 a4/8 + 1707a2
3/8 

+ 7335a1a2a3/4 − 23, 865a1
3 a3/16 − 62, 013a1

2 a2
2/32 ⎬ 

(2.3) 
+ 239, 985a1

4 a2/128 − 209, 055a1
6/512)] ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Y30 = (Be 
2/2ωe)(10a4 − 35a1a3 − 17a2

2/2 + 225a1
2 a2/4 

− 705a1
4/32) 

Y40 = (5B3/ω2)(7a6/2 − 63a1a5/4 − 33a2a4/4 − 63a 23/8e e 

+ 543a1
2 a4/16 + 75a2

3/16 + 483a1a2a3/8 − 1953a1
3 a3/32 

− 4989a1
2 a2

2/64 + 23, 265a1
4 a2/256 − 23, 151a1

6/1024) ⎭ 



� 
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⎫ 
Y01 = Be{1 + (B2/2ω2)[15 + 14a1 − 9a2 + 15a3 − 23a1a2 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

e e 

+ 21(a 2 + a 3)/2]}1 1

Y11 = (B2/ωe){6(1 + a1) + (B2/ω2)[175 + 285a1 − 335a2/2e e e 

+ 190a3 − 225a4/2 + 175a5 + 2295a1
2/8 − 459a1a2 

+ 1425a1a3/4 − 795a1a4/2 + 1005a2
2/8 − 715a2a3/2 

+ 1155a1
3/4 − 9639a1

2 a2/16 + 5145a1
2 a3/8 

+ 4677a1a2
2/8 − 14, 259a1

3 a2/16 ⎬ 
(2.4) 

+ 31, 185(a 4 + a 5)/128]} ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

1 1

Y21 = (6B3/ω2)[5 + 10a1 − 3a2 + 5a3 − 13a1a2e e 

+ 15(a1
2 + a1

3)/2] 

Y31 = (20B4/ω3)[7 + 21a1 − 17a2/2 + 14a3 − 9a4/2 + 7a5e e 

+ 225a1
2/8 − 45a1a2 + 105a1a3/4 − 51a1a4/2 + 51a2

2/8 

− 45a2a3/2 + 141a1
3/4 − 945a1

2 a2/16 + 435a1
2 a3/8 

+ 411a1a 22/8 − 1509a 31a2/16 + 3807(a 41 + a 5)/128] ⎭ 
1 ⎫ 

Y02 = −(4Be 
3/ωe 

2){1 + (Be 
2/2ωe 

2)[163 + 199a1 − 119a2 + 90a3⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
− 45a4 − 207a1a2 + 205a1a3/2 − 333a1

2 a2/2 + 693a1
2/4 

+ 46a 2 + 126(a 3 + a1
4/2)]}2 1� � ⎬� � � 19 

Y12 = − 12Be 
4 ωe 

3 + 9a1 + 9a1
2/2 − 4a2 (2.5)

2 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
Y22 = −(24Be 

5/ωe 
4)[65 + 125a1 − 61a2 + 30a3 − 15a4 

+ 495a1
2/4 − 117a1a2 + 26a 2 + 95a1a3/2 − 207a1

2 a2/22 

+ 90(a1
3 + a1

4/2)] 
⎭ ⎫ 

Y03 = 16Be 
5(3 + a1)/ωe 

4 ⎪⎪⎬ 
Y13 = (12B6/ω5)(233 + 279a1 + 189a 2 + 63a1

3 − 88a1a2 − 120a2 + 80a3/3)⎪⎪ (2.6)e e 1 

Y04 = (64B7/ω6)(13 + 9a1 − a2 + 9a1
2/4) ⎭ 

e e 

It should be noted that Be is generally much smaller than ωe. For most molecules the ratio Be 
2 ωe 

2 is of the 

order of 10−6, although for light molecules such as H2 it approaches more nearly to 10−5 . In such cases more terms 
are required in the expressions for the various coefficients. 

If Be/ωe is small, the Y ’s can be related to the ordinary band spectrum constants as follows: 

Y10 ≈ ωe Y20 ≈ −ωexe Y30 ≈ ωeye 

Y01 ≈ Be Y11 ≈ −αe Y21 ≈ γe 

Y02 ≈ −De Y12 ≈ −βe Y40 ≈ ωeze 

Y03 ≈ He (2.7) 
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where these symbols refer to the coefficients in the Bohr theory expansion for the molecular energy levels: � � � �2 � �3 � �41 1 1 1 
FvJ = ωe v + − ωexe v + + ωeye v + + ωeze v +

2 2 2 2 

+BvJ(J + 1) − DeJ
2(J + 1)2 + HeJ

3(J + 1)3 + . . . (2.8) � � � �2where Bv = Be − αe v + 1 + γe v + 1 . . . (cf.2, p. 92, pp. 107-108). 2 2 

Sandeman3 has extended Dunham’s treatment to include other terms of the same order of magnitude which 

involve higher powers of the vibrational quantum number. 
For the special case of the Morse potential function, Dunham shows that all the Y�0’s except Y10 and Y20 vanish 

and all but the first terms in the expressions for Y10 and Y20 are zero. Because of the simplicity of the expressions 
obtained with the Morse function, and because it does give a quite good fit to the actual potential in the region of 
r = re, the Morse function has been widely used. 

Several important relationships between constants have been derived for Morse potential functions. These are 

often useful for estimating otherwise unknown parameters. 
eThe Kratzer relation De = 4ω

B
2

3 

. 
e 

The Pekeris relation 

αe = 
ω

6 

e 

�� 
ω3xeBe 

3
�1/2 − Be 

2 
� 

The constant Y00 is exactly zero for Harmonic and Morse oscillators, but an approximate value for general 
oscillators is � �2

Be − ωexe αeωe αeωe 1 
Y00 = + + .

4 12Be 12Be Be 
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