MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#3: Building an Effective Hamiltonian

Last time: diatomic molecule as anharmonic non-rigid rotor

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{R}-\mathrm{R}_{\mathrm{e}} \\
\mathrm{~V}(\mathrm{Q}) & =\frac{1}{2} \mathrm{kQ}^{2}+\frac{1}{6} \mathrm{a}^{3}+\frac{1}{24} \mathrm{bQ}+\ldots \text { really KE }_{4}^{\mathrm{B}(\mathrm{Q}) \mathrm{J}(\mathrm{~J}+1)} \\
\mathrm{B}(\mathrm{R}) & =\frac{\hbar^{2}}{\mathrm{hc}} \frac{1}{2 \mu \mathrm{R}^{2}} \\
\mathrm{~B}(\mathrm{Q})= & \mathrm{B}_{\mathrm{e}}\left[1-\frac{1}{2}\left(\frac{\mathrm{Q}}{\mathrm{R}_{\mathrm{e}}}\right)+\frac{1}{3}\left(\frac{\mathrm{Q}}{\mathrm{R}_{\mathrm{e}}}\right)^{3}+\ldots\right] \\
\omega_{\mathrm{e}} & =\frac{1}{2 \pi \mathrm{c}}[\mathrm{k} / \mu]^{1 / 2} \\
\mathrm{E}_{\mathrm{vJ}} / \mathrm{hc} & =\tilde{\omega}_{\mathrm{e}}(\mathrm{v}+1 / 2)-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{2}+\omega_{\mathrm{e}} \mathrm{y}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{3} \ldots \\
& +\mathrm{J}(\mathrm{~J}+1)\left[\mathrm{B}_{\mathrm{e}}-\alpha_{\mathrm{e}}(\mathrm{v}+1 / 2)+\gamma_{\mathrm{e}}(\mathrm{v}+1 / 2)^{2} \ldots\right] \\
& -\mathrm{J}(\mathrm{~J}+1)^{2}\left[\mathrm{D}_{\mathrm{e}}+\beta_{\mathrm{e}}(\mathrm{v}+1 / 2)+\ldots\right]
\end{aligned}
$$

Problem: find $\tilde{\omega}_{e}, \omega_{e} \mathrm{x}_{\mathrm{e}}, \omega_{e} \mathrm{y}_{\mathrm{e}}, \alpha_{\mathrm{e}}, \mathrm{D}_{\mathrm{e}}$ in terms of $\mathrm{k}, \mathrm{a}, \mathrm{b}, \mathrm{R}_{\mathrm{e}}, \mu$ using non-degenerate perturbation theory (over-tilde implies additional corrections).

$$
\begin{aligned}
\mathbf{H}^{(0)} \psi_{\mathrm{v}}^{(0)} & =\mathrm{E}_{\mathrm{v}}^{(0)} \psi_{\mathrm{v}}^{(0)} \quad \text { defines basis states } \\
\frac{\mathbf{H}^{(0)}}{\mathrm{hc}}=\frac{1}{2} \mathrm{kQ}^{2}+\frac{\mathrm{p}^{2}}{2 \mu}+\mathrm{B}_{\mathrm{e}} \mathrm{~J}(\mathrm{~J}+1) & \Rightarrow \mathrm{E}_{\mathrm{vJ}}^{(0)} / \mathrm{hc}=\omega_{\mathrm{e}}(\mathrm{v}+1 / 2)+\mathrm{B}_{\mathrm{e}} \mathrm{~J}(\mathrm{~J}+1) \\
& \Rightarrow|\mathrm{v}, \mathrm{~J}\rangle^{0}=\left|\mathrm{v}^{\mathrm{HO}}\right\rangle|\mathrm{JM}\rangle
\end{aligned}
$$

\mathbf{H}^{\prime} is everything not in $\mathbf{H}^{(0)}$.
Some tools:

$$
\begin{aligned}
& \mathrm{Q}=\left[\frac{\hbar}{2 \pi c \mu \omega_{\mathrm{e}}}\right]^{1 / 2} \hat{\mathrm{Q}} \\
& \mathrm{P}=\left[\hbar 2 \pi \mathrm{c} \mu \omega_{\mathrm{e}}\right]^{1 / 2} \hat{\mathrm{P}} \\
& \widehat{\mathrm{Q}}=2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \\
& \hat{\mathrm{P}}=2^{-1 / 2} \mathrm{i}\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \\
& \langle\mathrm{v}| \mathbf{a}^{\dagger}|\mathrm{v}-1\rangle=\mathrm{v}^{1 / 2} \\
& \langle\mathrm{v}-1| \mathbf{a}|\mathrm{v}\rangle=\mathrm{v}^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a} \\
& {\left[\mathbf{a}^{\dagger}, \mathbf{a}\right]=\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a a}^{\dagger}} \\
& \left.\left.\left[\mathbf{a}^{\dagger}, \mathbf{a}\right]|\mathrm{v}\rangle=[\mathrm{v}-(\mathrm{v}\rangle=\mathrm{v}+1)\right]|\mathrm{v}\rangle=-\mathrm{v}\right\rangle \\
& {\left[\mathbf{a}^{\dagger}, \mathbf{a}\right]=-1}
\end{aligned} \quad \text { OR } \quad\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=+1 .
$$

$$
\left[\mathbf{N}, \mathbf{a}^{\dagger}\right]=\left[\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]=\mathbf{a}^{\dagger}\left(\mathbf{a}^{\dagger}-\mathbf{a}^{\dagger} \mathbf{a}\right)=\mathbf{a}^{\dagger}
$$

$$
[\mathbf{N}, \mathbf{a}]=\left[\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}-\mathbf{a a}^{\dagger} \mathbf{a}\right]=\left(\mathbf{a}^{\dagger} \mathbf{a}-\mathbf{a} a^{\dagger}\right) \mathbf{a}=-\mathbf{a}
$$

$$
\begin{aligned}
\hat{\mathrm{Q}}^{2}=\frac{1}{2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2} & =\frac{1}{2}\left(\mathbf{a}^{2}+\mathbf{a}^{\dagger 2}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}\right) \\
& =\frac{1}{2}\left[\mathbf{a}^{2}+\mathbf{a}^{\dagger 2}+(2 \mathbf{N}+1)\right] \\
\hat{\mathrm{P}}^{2}=-\frac{1}{2}\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)^{2} & =-\frac{1}{2}\left[\mathbf{a}^{2}+\mathbf{a}^{\dagger 2}-(2 \mathbf{N}+1)\right]
\end{aligned}
$$

$$
\widehat{\mathrm{Q}}^{2}+\hat{\mathrm{P}}^{2}=(2 \mathbf{N}+1) \quad(\text { off-diagonal elements cancel })
$$

$$
\widehat{\mathrm{Q}}^{3}=2^{-3 / 2}\left(\mathbf{a}^{3}+\mathbf{a}^{\dagger 3}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}\right)
$$

$$
=2^{-3 / 2}\left[\mathbf{a}^{3}+\mathbf{a}^{\dagger 3}+3 \mathbf{a}^{\dagger}(\mathbf{N}+1)+3 \mathbf{a} \mathbf{N}\right]
$$

$$
\widehat{\mathrm{Q}}^{4}=\frac{1}{4}\left[\mathbf{a}^{4}+\mathbf{a}^{\dagger 2}+\mathbf{a}^{\dagger 2}(4 \mathbf{N}+6)+\mathbf{a}^{2}(4 \mathbf{N}-6)+6 \mathbf{N}^{2}+9 \mathbf{N}+4\right]
$$

OK. We are ready to begin some polyatomic molecule problems.
$\xrightarrow{\mathrm{C}_{2 \mathrm{v}}: \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, ~}$
Suppose we have a bent $A B A$ triatomic molecule where

$$
\underbrace{\omega_{1} \approx 2 \omega_{2}}_{\text {resonant }}, \underbrace{\omega_{3} \approx 1.20 \omega_{1}}_{\text {not resonant }}, \quad \omega_{1}, \omega_{2} \text { totally sym. } \omega_{3} \text { not tot. sym. }
$$

$\mathbf{H}^{\prime}=\frac{1}{2} \mathrm{k}_{122} \mathrm{Q}_{1} \mathrm{Q}_{2}^{2}+\frac{1}{4} \mathrm{k}_{1133} \mathrm{Q}_{1}^{2} \mathrm{Q}_{3}^{2}+\frac{1}{12} \mathrm{k}_{22233} \mathrm{Q}_{2}^{3} \mathrm{Q}_{3}^{2}$
Fermi Darling-Dennison high order
$\mathrm{E}(\mathbf{V})=\sum_{\mathrm{i}} \omega_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}+1 / 2\right)+\sum_{\mathrm{i} \geq \mathrm{j}} \mathrm{x}_{\mathrm{ij}}\left(\mathrm{v}_{\mathrm{i}}+1 / 2\right)\left(\mathrm{v}_{\mathrm{j}}+1 / 2\right)+\ldots$
Why do we have only these leading terms in the inter-mode coupling in \mathbf{H}^{\prime} ?
symmetry
resonance
why not higher order terms?
when you put in the $\mathrm{Q} \rightarrow \widehat{\mathrm{Q}}$ scale factor and reasonable estimates of higher derivatives of $\mathrm{V}\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right)$ get factor of 10 decrease per order in \mathbf{Q}.

How do we begin to solve a problem like this?

1. Perturbation Theory (non-degenerate)

$$
\begin{aligned}
& \mathrm{E}_{\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)}^{(0)}=\omega_{1}\left(\mathrm{v}_{1}+1 / 2\right)+\omega_{2}\left(\mathrm{v}_{2}+1 / 2\right)+\omega_{3}\left(\mathrm{v}_{3}+1 / 2\right) \\
& \mathrm{E}_{\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)}^{(1)}=\mathbf{H}_{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} ; \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}}^{(1)} \quad \text { there is a } \Delta \mathrm{v}_{1}=\Delta \mathrm{v}_{3}=0 \text { term! } \\
& \mathrm{E}_{\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)}^{(2)}=\sum_{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}}^{\sum_{3}^{\prime}} \frac{\left(\mathbf{H}_{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} ; \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}}^{(1)}\right.}{\mathrm{E}_{\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)}^{(0)}-\mathrm{E}_{\left(\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}\right)}^{(0)}}
\end{aligned}
$$

2. Off-diagonal matrix element selection rules
$\mathrm{Q}_{1} \mathrm{Q}_{2}^{2} \quad \Delta \mathrm{v}_{1}= \pm 1, \Delta \mathrm{v}_{2}=0, \pm 2:\left(\Delta \mathrm{v}_{1}, \Delta \mathrm{v}_{2}\right)=(1,0),(-1,0),(1,2),(1,-2),(-1,2),(-1,-2)$
$\mathrm{Q}_{1}^{2} \mathrm{Q}_{3}^{2} \quad \Delta \mathrm{v}_{1}=0, \pm 2, \Delta \mathrm{v}_{3}=0, \pm 2 \quad\left(\Delta \mathrm{v}_{1}, \Delta \mathrm{v}_{3}\right)=(0,0),(0,2),(0,-2),(2,0),(-2,0),(2,-2)$, $(-2,2)$
$\mathrm{Q}_{2}^{3} \mathrm{Q}_{3}^{2} \quad \Delta \mathrm{v}_{2}= \pm 1, \pm 3, \Delta \mathrm{v}_{3}=0, \pm 2 \quad(1,0),(-1,0),(3,0),(-3,0),(1,2),(1,-2),(-1,2)$, $(-1,-2),(3,2),(3,2),(-3,2),(-3,-2)$

Each selection rule gives a specific combination of $\mathbf{a}_{1}^{\dagger}, \mathbf{a}_{i}$. Try it!
3. Look for "accidental" resonances $\quad \omega_{1} \approx 2 \omega_{2}\left(\omega_{1} \neq \omega_{3}\right)$
denominator $\rightarrow 0$
quasi-degenerate perturbation theory \rightarrow set up

$$
\text { polyad } \mathbf{H}^{\text {eff }} \quad \mathrm{P}=2 \mathrm{v}_{1}+\mathrm{v}_{2}
$$

4. Correct for effects of remote perturbers (and look out for accidents).
5. Algebraic reduction (or use computer algebra) (combine terms $\left(\Delta \mathrm{v}_{1}, \Delta \mathrm{v}_{2}\right)=(1,-2)$ AND $(-1,2)$ because both have small energy denominator.

So where does this leave us?
The $Q_{1}^{2} Q_{3}^{2}$ matrix element appears in $\underline{1^{\text {st }} \text { order, but it is not resonant. }}$
Consider only one term in \mathbf{H}^{\prime} :

$$
\begin{aligned}
\frac{1}{4} \mathrm{k}_{1133} \mathrm{Q}_{1}^{2} \mathrm{Q}_{3}^{2} & =\frac{1}{4} \mathrm{k}_{1133}\left[\frac{\hbar}{2 \pi \mathrm{c} \mu_{1} \omega_{1}}\right]\left[\frac{\hbar}{2 \pi \mathrm{c} \mu_{3} \omega_{3}}\right] \frac{1}{4}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)^{2}\left(\mathbf{a}_{3}+\mathbf{a}_{3}^{\dagger}\right)^{2} \\
& =\frac{1}{16}\left[\frac{\hbar}{\left[\mathrm{k}_{1} \mu_{1}\right]^{1 / 2}} \frac{\hbar}{\left.\left[\mathrm{k}_{3} \mu_{3}\right]^{1 / 2}\right] \mathrm{k}_{1133}}\left(\mathbf{a}_{1}^{2}+\mathbf{a}_{1}^{\dagger 2}+2 \mathbf{N}_{1}+1\right)\left(\mathbf{a}_{3}^{2}+\mathbf{a}_{3}^{\dagger 2}+2 \mathbf{N}_{3}+1\right)\right. \\
\left\langle\mathrm{v}_{1} \mathrm{v}_{3}\right| \mathbf{H}^{\prime}\left|\mathrm{v}_{1} \mathrm{v}_{3}\right\rangle & =\frac{1}{4}\left(\frac{\hbar}{\left(\mathrm{k}_{1} \mu_{1}\right)^{1 / 2}\left(\mathrm{k}_{3} \mu_{3}\right)^{1 / 2}}\right) \mathrm{k}_{1133} \underbrace{\left(\mathrm{v}_{1}+1 / 2\right)\left(\mathrm{v}_{3}+1 / 2\right)}_{\text {constant }}
\end{aligned}
$$

We have related x_{13} to k_{1133} !
Could get lots of second-order corrections to $\mathrm{E}(\mathbf{V})$, but we need to do something more important first.
NOW we worry about resonances: $\quad \omega_{1} \approx 2 \omega_{2} \quad$ We need $\frac{1}{2} \mathrm{k}_{122} \mathrm{Q}_{1} \mathrm{Q}_{2}^{2}$. Why?

Relevant term in \mathbf{H}^{\prime} is

$$
\mathbf{H}^{\prime}=\underbrace{\frac{1}{2} \mathrm{k}_{122}\left[\frac{\hbar^{1 / 2}}{\left(\mathrm{k}_{1} \mu_{1}\right)^{1 / 4}} \frac{\hbar}{\left(\mathrm{k}_{2} \mu_{2}\right)^{1 / 2}}\right] 2^{-3 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)\left(\mathbf{a}_{2}+\mathbf{a}_{2}^{\dagger}\right)^{2}}_{\mathrm{K}}
$$

resonant combination is $\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger 2}+\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{2}$

> Hermitian (good!)
matrix element $/\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right| \mathbf{a}_{1} \mathbf{a}_{2}^{\dagger 2}\left|\mathrm{v}_{1}+1, \mathrm{v}_{2}-2\right\rangle=\left[\left(\mathrm{v}_{1}+1\right) \mathrm{v}_{2}\left(\mathrm{v}_{2}-1\right)\right]^{1 / 2}$
scaling $\quad\left\langle\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right| \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{2} \mid \mathrm{v}_{1}-1, \mathrm{v}_{2}+2\right\rangle=\left[\mathrm{v}_{1}\left(\mathrm{v}_{2}+2\right)\left(\mathrm{v}_{2}+1\right)\right]^{1 / 2}$

Polyad QN

$$
\left.\begin{array}{rl}
P=1 & \left(v_{1}, v_{2}\right)=(0,1) \\
2 & (0,2),(1,0) \\
& 3 \\
4 & (1,1),(0,3) \\
5 & (2,1),(1,2),(1,3),(0,4)
\end{array}\right\} \text { membership scaling }
$$

Each polyad has

$$
\begin{aligned}
& \mathrm{P} / 2+1 \\
& \text { (even P) }
\end{aligned} \quad \text { or } \quad \begin{aligned}
& \mathrm{P} / 2+1 / 2 \text { members } \\
& (\text { odd } \mathrm{P})
\end{aligned}
$$

Look at $\mathrm{P}=6$ polyad

	3,0	2,2	1,4	0,6
$(3,0)$	$\mathrm{G}(3,0)$	$\mathrm{K}[3 \cdot 2 \cdot 1]^{1 / 2}$	0	0
$(2,2)$	sym	$\mathrm{G}(2,2)$	$\mathrm{K}[2 \cdot 4 \cdot 3]^{1 / 2}$	0
$(1,4)$	0	sym	$\mathrm{G}(1,4)$	$\mathrm{K}[1 \cdot 6 \cdot 5]^{1 / 2}$
$(0,6)$	0	0	sym	$\mathrm{G}(0,6)$

$\mathrm{G}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\omega_{1}\left(\mathrm{v}_{1}+1 / 2\right)+\omega_{2}\left(\mathrm{v}_{2}+1 / 2\right)$

$$
+\left[x_{11}\left(v_{1}+1 / 2\right)^{2}+x_{22}\left(v_{2}+1 / 2\right)^{2}+x_{12}\left(v_{1}+1 / 2\right)\left(v_{2}+1 / 2\right)\right]
$$

called diagonal anharmonicity
Most of x_{11} comes from $\frac{1}{6} \mathrm{k}_{111} \mathrm{Q}_{1}^{3}$ in $2^{\text {nd }}$ order, $\frac{1}{24} \mathrm{k}_{1111} \mathrm{Q}_{1}^{4}$ in $1^{\text {st }}$ order.
Most of x_{22} comes from $\frac{1}{6} \mathrm{k}_{222} \mathrm{Q}_{2}^{3}$ in $2^{\text {nd }}$ order, $\frac{1}{24} \mathrm{k}_{2222} \mathrm{Q}_{2}^{4}$ in $1^{\text {st }}$ order.
Most of x_{12} comes from $\underbrace{\frac{1}{6} \mathrm{k}_{1122} \mathrm{Q}_{1}^{2} \mathrm{Q}_{2}^{2} \text { in first order? }}_{\text {can we use this? yes! Why? }}$
k_{122} in 2 nd order?
can we use this? NO! Why?

Find the eigenvalues and eigenvectors of this block? Not yet. But if we did, would not fit simple polynomial in $\left(\mathrm{v}_{1}+1 / 2\right)^{\mathrm{n}}\left(\mathrm{v}_{2}+1 / 2\right)^{\mathrm{m}}$.

Why not?
Next we need to make out-of-block corrections to each element of polyad block.
"Van Vleck" transformation.

This example is for out-of-block corrections on diagonal. There are also out-of-block corrections offdiagonal within block, e.g.

$$
\left(3,0, v_{3}\right) \quad-\text { intermediate states }-\quad\left(2,2, v_{3}\right)
$$

This gives you a glimpse of the machinery needed to set up $\mathrm{E}(\mathrm{v})$ for one anharmonic oscillator and for anharmonic interactions between several (an)harmonic oscillators. "Anharmonically coupled harmonic oscillators": The standard tool for coupled normal modes.

Atoms - ideas to represent "electric structure" beyond Bernath
Tinkham Group Theory and Quantum Mechanics pages 154-188
Weissbluth Atoms and Molecules pages 413-454

My goal is a survey of the key ideas - whet your appetite.

3-Lecture Outline

$1 \quad 1 \mathrm{e}^{-}$atoms $\quad\left|\mathrm{n} \ell \mathrm{m}_{\ell} \mathrm{sm}_{\mathrm{s}}\right\rangle$
$|\mathrm{n} \ell \mathrm{sjm}\rangle$
all properties of all states $\rightarrow \mathrm{f}(\mathrm{n}, \ell, \mathrm{j} ; \mathrm{Z}, \mu)$
SCALING
2. alkali $1 \mathrm{e}^{-}$outside closed shell
$\mathrm{Z} \rightarrow \mathrm{Z}^{\text {eff }}(\mathrm{r}) \rightarrow \mathrm{Z}_{\mathrm{n} \ell}^{\text {eff }}$
$\mathrm{n} \rightarrow \mathrm{n}^{*}=\mathrm{n}-\boldsymbol{\delta}_{\ell} \quad \leftarrow$ quantum defect $\boldsymbol{\delta}_{\ell} \pi$ is a phase shift
$1: 1$ corresponding $\mathrm{n} \ell$ orbital \leftrightarrow electronic state modified scaling
3. many - e^{-}atoms
configurations \rightarrow L,S terms (several)
$\varepsilon_{\mathrm{n} \ell}, \mathrm{F}^{\mathrm{k}}\left(\mathrm{n} \ell, \mathrm{n}^{\prime} \ell^{\prime}\right), \mathrm{G}^{\mathrm{k}}\left(\mathrm{n} \ell, \mathrm{n}^{\prime} \ell^{\prime}\right), \zeta_{\mathrm{n} \ell}$
limiting coupling cases [characteristic patterns of levels]
$\mathbf{H}^{\text {eff }}$ models
scaling in ε, F, G, ζ
Many of these ideas will be used (and developed) for molecules.
See Lectures \#5 - \#8.

