MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture \#2 Supplement

Contents

A Matrix Solution of Harmonic Oscillator Problem . 1
B Derivation of Heisenberg Equation of Motion . 4
C Matrix Elements of any Function of X and P . 5

A Matrix Solution of Harmonic Oscillator Problem

We wish to obtain all possible information about the eigenstates of a harmonic oscillator without ever solving for the actual eigenfunctions. The energy levels and the expectation values of any positive integer power of $\mathbf{x}=r-r_{e}$ and $\mathbf{p}=m \frac{d x}{d t}$ will be obtained.

The first step is always to write down the Hamiltonian operator, which for the harmonic oscillator is:

$$
\begin{equation*}
\mathbf{H}=\frac{p^{2}}{2 m}+\frac{k x^{2}}{2} \tag{1}
\end{equation*}
$$

In order to construct the matrix for \mathbf{H} we need to know the matrix elements of \mathbf{p}^{2} and \mathbf{x}^{2} in some convenient basis set. Because we are lazy (and clever) we would like to choose a basis set which results in a diagonal \mathbf{H} matrix. We know such a basis set must exist (because any Hermitian matrix can be diagonalized), so we choose that basis set and try to obtain the \mathbf{p} and \mathbf{x} matrices in that basis without initially knowing the properties of those basis functions. We know:
A. \mathbf{H} is in diagonal form (choice of basis);
B. $[\mathbf{x}, \mathbf{p}]=\mathbf{x p}-\mathbf{p x}=i \hbar$ (a fundamental postulate of quantum mechanics;
C. $\frac{d}{d t} \mathbf{A}=\frac{1}{i \hbar}[\mathbf{A}, \mathbf{H}]+\frac{\partial \mathbf{A}}{\partial t}$ for any operator \mathbf{A} (the Heisenberg equation of motion, derived in the appendix of this handout).

$$
\begin{align*}
& \mathbf{p}=m \dot{\mathbf{x}} \\
& p_{i k}=\frac{m}{i \hbar}[\mathbf{x}, \mathbf{H}]_{i k}=\frac{m}{i \hbar}\left[\sum_{j}\left(x_{i j} H_{j k}-H_{i j} x_{j k}\right)\right] \tag{2}
\end{align*}
$$

The force is

$$
\begin{equation*}
\mathbf{F}=\dot{\mathbf{p}}=\frac{1}{i \hbar}[\mathbf{p}, \mathbf{H}] \tag{3}
\end{equation*}
$$

but also

$$
\begin{equation*}
\mathbf{F}=-\nabla \mathbf{V}=-\frac{d}{d x}\left(\frac{k x^{2}}{2}\right)=-k \mathbf{x} \tag{4}
\end{equation*}
$$

so

$$
\begin{align*}
\mathbf{x} & =-\left(\frac{1}{k}\right) \frac{1}{i \hbar}[\mathbf{p}, \mathbf{H}] \tag{5}\\
x_{i k} & =\frac{i}{\hbar k}\left[\sum_{j}\left(p_{i j} H_{j k}-H_{i j} p_{j k}\right)\right] \tag{6}
\end{align*}
$$

Equations (2) and (6) are coupled operator equations. We uncouple them by using the diagonal property of \mathbf{H}.
From Eq. (2)

$$
\begin{align*}
& p_{i k}=\frac{m}{i \hbar} x_{i k}\left(H_{k k}-H_{i i}\right) \tag{7}\\
& x_{i k}=\frac{i}{\hbar k} p_{i k}\left(H_{k k}-H_{i i}\right) \tag{8}
\end{align*}
$$

now multiply (7) by $x_{i k}$ and (8) by $p_{i k}$ and equating

$$
\begin{equation*}
\frac{m}{i \hbar}\left(x_{i k}\right)^{2}\left(H_{k k}-H_{i i}\right)=\frac{i}{\hbar k}\left(p_{i k}\right)^{2}\left(H_{k k}-H_{i i}\right) \tag{9}
\end{equation*}
$$

if $i \neq k$, then (otherwise we would be dividing by zero)

$$
\begin{equation*}
x_{i k}^{2}=-\frac{1}{k m} p_{i k}^{2} \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x_{i k}= \pm \frac{i}{\sqrt{k m}} p_{i k} \tag{11}
\end{equation*}
$$

Return to equations (7) and (8) and note that if $i=k$, then both $p_{i i}$ and $x_{i i}$ are zero. This means that neither the \mathbf{p} nor the \mathbf{x} matrices have any diagonal matrix elements.

If we now plug (11) into equation (7) we get

$$
\begin{equation*}
p_{i k}=\frac{m}{i \hbar}\left(\pm \frac{i}{\sqrt{k m}}\right) p_{i k}\left(H_{k k}-H_{i i}\right) \tag{12}
\end{equation*}
$$

If and only if $p_{i k} \neq 0$, we can divide through by $p_{i k}$ and rearrange

$$
\begin{equation*}
H_{k k}-H_{i i}= \pm \hbar \sqrt{\frac{k}{m}}=h \nu \tag{13}
\end{equation*}
$$

If $H_{k k}-H_{i i} \neq \pm h \nu$, then $p_{i k}=0$ (and also $x_{i k}=0$). This means that the energy levels of the harmonic oscillator are evenly spaced and separated by $h \nu$. So

$$
H_{i i}=\hbar \sqrt{\frac{k}{m}}(n+\alpha)
$$

where n is an integer and α is undetermined. Note the requirement that if $H_{k k}-H_{i i} \neq \pm h \nu, p_{i k}=x_{i k}=0$ implies that the only non-zero $p_{i k}$ and $x_{i k}$ are those where $k=i \pm 1$. Actually it is necessary to assume that the eigenvalues of \mathbf{H} are non-degenerate and increase monotonically with index. Now use $[\mathbf{x}, \mathbf{p}]=i \hbar$ to get matrix elements of \mathbf{x} and \mathbf{p}.

$$
\begin{equation*}
\sum_{j}\left(x_{i j} p_{j k}-p_{i j} x_{j k}\right)=i \hbar \delta_{i k} \tag{14}
\end{equation*}
$$

The $\delta_{i k}$ (delta function) comes from the orthogonality of our basis set. The sum in equation (14) consists of only two terms corresponding to the only non-zero \mathbf{p} and \mathbf{x} matrix elements.

$$
\begin{equation*}
\left(x_{i, i+1} p_{i+1, i}-p_{i, i+1} x_{i+1, i}\right)+\left(x_{i, i-1} p_{i-1, i}-p_{i, i-1} x_{i-1, i}\right)=i \hbar \tag{15}
\end{equation*}
$$

Since there is a lowest energy that corresponds to the lowest value of the index, when $i=1$

$$
p_{i, i-1}=x_{i, i-1}=0
$$

is required because no eigenstates exist with $i<1$. Thus

$$
\begin{equation*}
x_{12} p_{21}-p_{12} x_{21}=i \hbar \tag{16}
\end{equation*}
$$

Employing the Hermitian property of \mathbf{p} and \mathbf{x}.

$$
\begin{equation*}
x_{12} p_{12}^{*}-p_{12} x_{12}^{*}=i \hbar \tag{17}
\end{equation*}
$$

inserting equation (11)

$$
\begin{gather*}
x_{12} x_{12}^{*}\left(\pm \frac{\sqrt{k m}}{i}\right)-x_{12} x_{12}^{*}\left(\pm \frac{\sqrt{k m}}{i}\right)=i \hbar . \tag{18}\\
\text { Thus } \begin{array}{c}
x_{12} x_{12}^{*}=i \hbar\left(\mp \frac{i}{i 2 \sqrt{k m}}\right) \\
\left|x_{12}\right|^{2}=\frac{\hbar}{2 \sqrt{k m}} \\
\left|p_{12}\right|^{2}=k m\left|x_{12}\right|^{2}=\frac{\sqrt{k m}}{2} \hbar
\end{array} \tag{19}
\end{gather*}
$$

Now go back to equation (15) and consider the general case

$$
\frac{\sqrt{k m}}{i}\left[-\left|x_{n, n+1}\right|^{2}-\left|x_{n, n+1}\right|^{2}-\left|x_{n, n-1}\right|^{2}-\left|x_{n, n-1}\right|^{2}\right]=i \hbar
$$

Thus

$$
\begin{equation*}
\left|x_{n, n+1}\right|^{2}=\left|x_{n, n-1}\right|^{2}+\frac{\hbar}{2 \sqrt{k m}} \tag{22}
\end{equation*}
$$

Now, if we re-index, letting $n=0$ correspond to the lowest eigenstate,

$$
\begin{align*}
\left|x_{n, n+1}\right|^{2} & =\frac{(n+1) \hbar}{2 \sqrt{k m}} \\
\left|p_{n, n+1}\right|^{2} & =\frac{(n+1) \hbar \sqrt{k m}}{2} \tag{23}
\end{align*}
$$

and in order to get values for $x_{n, n \pm 1}$ and $p_{n, n \pm 1}$ we have to choose phase consistent with equation (11):

$$
\begin{align*}
& x_{n, n+1}=\sqrt{\frac{(n+1) \hbar}{2 \sqrt{k m}}} \\
& x_{n, n-1}=\sqrt{\frac{n \hbar}{2 \sqrt{k m}}} \\
& p_{n, n+1}=-i \sqrt{\frac{(n+1) \hbar \sqrt{k m}}{2}} \\
& p_{n, n-1}=i \sqrt{\frac{n \hbar \sqrt{k m}}{2}} \tag{24}
\end{align*}
$$

Now evaluate $H_{n n}$.

$$
\begin{align*}
\mathbf{H} & =\frac{\mathbf{p}^{2}}{2 m}+\frac{k \mathbf{x}^{2}}{2} \\
\left(\mathbf{p}^{2}\right)_{n n} & =\sum_{m}\langle n| \mathbf{p}|m\rangle\langle m| \mathbf{p}|n\rangle=\langle n| \mathbf{p}|n+1\rangle\langle n+1| \mathbf{p}|n\rangle+\langle n| \mathbf{p}|n-1\rangle\langle n-1| \mathbf{p}|n\rangle=\frac{(2 n+1) \hbar \sqrt{k m}}{2} \tag{25}
\end{align*}
$$

Similarly

$$
\begin{gather*}
(\mathbf{x})_{n n}^{2}=\frac{\hbar(2 n+1)}{2 \sqrt{k m}} \\
\text { Thus } \quad H_{n n}=\hbar \sqrt{\frac{k}{m}}\left(\frac{2 n+1}{4}+\frac{2 n+1}{4}\right)=\hbar \sqrt{\frac{k}{m}}\left(v+\frac{1}{2}\right) . \tag{26}
\end{gather*}
$$

Convince yourself now that \mathbf{H} is diagonal.

APPENDIX

B Derivation of Heisenberg Equation of Motion

The time dependent Schrödinger equation is

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\mathbf{H} \psi \tag{1}
\end{equation*}
$$

We wish to know the time derivative of the matrix element of any operator \mathbf{A} which corresponds to an observable quantity. This derivation will consider only the time derivative of the expectation value $\langle\mathbf{A}\rangle$ but can be generalized to include any matrix element of \mathbf{A} by adding a prime to ψ^{*} wherever it appears below.

$$
\begin{equation*}
\frac{d}{d t}\langle\mathbf{A}\rangle=\frac{d}{d t} \int \psi^{*} \mathbf{A} \psi d \tau \tag{2}
\end{equation*}
$$

Differentiate under integral and apply the chain rule (denote $\frac{d}{d t}$ by')

$$
\begin{equation*}
\frac{d}{d t}\langle\mathbf{A}\rangle=\int\left(\dot{\psi}^{*} \mathbf{A} \psi+\psi^{*} \dot{\mathbf{A}} \psi+\psi^{*} \mathbf{A} \dot{\psi}\right) d \tau \tag{3}
\end{equation*}
$$

Evaluate the first and third terms by inserting $\dot{\psi}=\frac{1}{i \hbar} \mathbf{H} \psi$ or the complex conjugate from equation (1).

$$
\begin{align*}
\frac{d}{d t}\langle\mathbf{A}\rangle & =\int\left(-\frac{1}{i \hbar} \mathbf{H} \psi^{*} \mathbf{A} \psi+\psi^{*} \dot{\mathbf{A}} \psi+\frac{1}{i \hbar} \psi^{*} \mathbf{A} \mathbf{H} \psi\right) d \tau \tag{4}\\
& =\frac{1}{i \hbar} \int\left(\psi^{*} \mathbf{A} \mathbf{H} \psi-\psi^{*} \mathbf{H} \mathbf{A} \psi+i \hbar \psi^{*} \dot{\mathbf{A}} \psi\right) d \tau \tag{5}
\end{align*}
$$

rearranging

$$
\begin{align*}
i \hbar \frac{d}{d t}\langle\mathbf{A}\rangle & =\int\left(\psi^{*}[\mathbf{A}, \mathbf{H}] \psi+i \hbar \psi^{*} \dot{\mathbf{A}} \psi\right) d \tau \\
\text { or } \quad i \hbar \dot{\mathbf{A}} & =[\mathbf{A}, \mathbf{H}]+i \hbar \frac{\partial \mathbf{A}}{\partial t} \tag{6}
\end{align*}
$$

where (6) is understood to be a matrix equation.

C Matrix Elements of any Function of X and P

For any vibrational problem, a harmonic oscillator basis set may be chosen. How are matrix elements of any function of X or P obtained?

Let \mathbf{T} define the transformation which diagonalizes \mathbf{H} :

$$
\begin{equation*}
\left(\mathbf{T}^{\dagger} \mathbf{H T}\right)=E_{i} \delta_{i j} \tag{7}
\end{equation*}
$$

\mathbf{T} takes us to the energy basis. Let \mathbf{S} define a different transformation which diagonalizes \mathbf{X}.

$$
\begin{equation*}
\left(\mathbf{S}^{\dagger} \mathbf{X S}\right)_{i j}=X_{i} \delta_{i j} \tag{8}
\end{equation*}
$$

\mathbf{S} takes us from the harmonic basis to a (strange) position basis. It can be shown that an operator corresponding to any rational power of \mathbf{X} (or a power series in \mathbf{X}) can be expressed as

$$
\begin{equation*}
\mathbf{X}^{a / b}=\mathbf{S}\left(\mathbf{S}^{\dagger} \mathbf{X} \mathbf{S}\right)^{a / b} \mathbf{S}^{\dagger}=\mathbf{S}\left(X_{i} \delta_{i j}\right)^{a / b} \mathbf{S}^{\dagger} \tag{9}
\end{equation*}
$$

where the meaning of a diagonal matrix to a rational power is obvious. This result could be proved by noting that any power of a diagonal matrix is still diagonal and that $\mathbf{S S}^{\dagger}=\mathbb{1}$ (unit matrix). The $\mathbf{X}^{a / b}$ matrix must finally be transformed to the energy basis:

$$
\begin{equation*}
\text { Observable } \mathbf{X}^{a / b} \text { matrix }=\mathbf{T}^{\dagger} \mathbf{S}\left(\mathbf{S}^{\dagger} \mathbf{X S}\right)^{a / b} \mathbf{S}^{\dagger} \mathbf{T} \tag{10}
\end{equation*}
$$

