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A Matrix Solution of Harmonic Oscillator Problem 

We wish to obtain all possible information about the eigenstates of a harmonic oscillator without ever solving for 
the actual eigenfunctions. The energy levels and the expectation values of any positive integer power of x= r − re 

and p = m dx will be obtained. dt 
The first step is always to write down the Hamiltonian operator, which for the harmonic oscillator is: 

p2 kx2 

H = + (1)
2m 2 

In order to construct the matrix for H we need to know the matrix elements of p2 and x2 in some convenient 
basis set. Because we are lazy (and clever) we would like to choose a basis set which results in a diagonal H matrix. 
We know such a basis set must exist (because any Hermitian matrix can be diagonalized), so we choose that basis set 
and try to obtain the p and x matrices in that basis without initially knowing the properties of those basis functions. 
We know: 

A. H is in diagonal form (choice of basis); 

B. [x, p] = xp − px = i� (a fundamental postulate of quantum mechanics; 

C. d A = i
1 
� [A, H] + ∂A for any operator A (the Heisenberg equation of motion, derived in the appendix of this dt ∂t 

handout). 

p = mẋ ⎡ ⎤ 
m m 

pik = [x, H]ik = ⎣ (xij Hjk − Hij xjk)⎦ (2)
i� i� 

j 

The force is 
1

F = ṗ = [p, H] (3)
i� 

1 
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but also 

F = −�V = − 
d 
dx 

� 
kx2 

2 

� 

= −kx (4) 

so 

x = − 

� 
1 
k 

� 
1 
i� 

[p, H] (5) ⎡ ⎤ 

xik = 
i 

�k 
⎣ 
� 

(pij Hjk − Hij pjk)⎦ (6) 
j 

Equations (2) and (6) are coupled operator equations. We uncouple them by using the diagonal property of H. 
From Eq. (2) 

m 
pik = xik(Hkk − Hii) (7)

i� 
i 

xik = pik(Hkk − Hii) (8)
�k 

now multiply (7) by xik and (8) by pik and equating 

m i
(xik)2(Hkk − Hii) = (pik)2(Hkk − Hii) (9)

i� �k 

if i =� k, then (otherwise we would be dividing by zero) 

1 
x 2 p 2 (10)ik = − ikkm 

Thus 
i (11)xik = ± √
km 
pik 

Return to equations (7) and (8) and note that if i = k, then both pii and xii are zero. This means that neither the 
p nor the x matrices have any diagonal matrix elements. 

If we now plug (11) into equation (7) we get 

m i 
pik = 

i� 
±√

km 
pik(Hkk − Hii). (12) 

If and only if pik = 0, we can divide through by � pik and rearrange 

Hkk − Hii = ±� k = hν (13)m 

If Hkk − Hii =� ±hν, then pik = 0 (and also xik = 0). This means that the energy levels of the harmonic oscillator 
are evenly spaced and separated by hν. So � 

k 
Hii = � (n + α) 

m 

where n is an integer and α is undetermined. Note the requirement that if Hkk − Hii =� ±hν, pik = xik = 0 implies 
that the only non-zero pik and xik are those where k = i ± 1. Actually it is necessary to assume that the eigenvalues 
of H are non-degenerate and increase monotonically with index. Now use [x, p] = i� to get matrix elements of x 
and p. � 

(xij pjk − pij xjk) = i�δik. (14) 
j 
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The δik (delta function) comes from the orthogonality of our basis set. The sum in equation (14) consists of only 
two terms corresponding to the only non-zero p and x matrix elements. 

(xi,i+1pi+1,i − pi,i+1xi+1,i) + (xi,i−1pi−1,i − pi,i−1xi−1,i) = i�. (15) 

Since there is a lowest energy that corresponds to the lowest value of the index, when i = 1 

pi,i−1 = xi,i−1 = 0 

is required because no eigenstates exist with i < 1. Thus 

x12p21 − p12x21 = i�. (16) 

Employing the Hermitian property of p and x. 

x12p
∗ 

12 = i� (17)12 − p12x
∗ 

inserting equation (11) 
√
km 

√
km 

x12x
∗ ± 

i 
− x12x

∗ ± 
i 

= i�. (18)12 12 

i
Thus x12x

∗ = i� (19)12 � 
i2
√
km 

2|x12 = (20)|
2
√
km √

km |p12|2 = km|x12|2 =
2 

� (21) 

Now go back to equation (15) and consider the general case 
√
km 2 2 2 2 

i 
− |xn,n+1| − |xn,n+1| − |xn,n−1| − |xn,n−1| = i� 

Thus 
|xn,n+1| 2 = |xn,n−1| 2 +

2
√� 

km 
. (22) 

Now, if we re-index, letting n = 0 correspond to the lowest eigenstate, 

2 =
(n + 1)� |xn,n+1| 
2
√
km 

2 (n + 1)�
√
km |pn,n+1| = 

2 
(23) 

and in order to get values for xn,n±1 and pn,n±1 we have to choose phase consistent with equation (11): 

(n + 1)� 
xn,n+1 = 

2
√
km 

n� 
xn,n−1 = 

2
√
km 

(n + 1)�
√
km 

pn,n+1 = −i 
2 

n�
√
km 

pn,n−1 = i . (24)
2 
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Now evaluate Hnn. 

p2 kx2


H = +

2m 2 � (2n + 1)�

√
km 

(p2)nn = �n|p|m� �m|p|n� = �n|p|n + 1� �n + 1|p|n� + �n|p|n − 1� �n − 1|p|n� =
2 

. (25) 
m 

Similarly 

(x)2 = 
�(2n + 1) 

nn 2
√
km � � � � � � 

k 2n + 1 2n + 1 k 1
Thus Hnn = � + = � v + . (26) 

m 4 4 m 2 

Convince yourself now that H is diagonal. 

**************************** 
APPENDIX 

B Derivation of Heisenberg Equation of Motion 

The time dependent Schrödinger equation is 

∂ψ 
i� = Hψ (1)
∂t 

We wish to know the time derivative of the matrix element of any operator A which corresponds to an observable 
quantity. This derivation will consider only the time derivative of the expectation value �A� but can be generalized 
to include any matrix element of A by adding a prime to ψ∗ wherever it appears below. 

d d 
dt 
�A� = 

dt 
ψ∗Aψdτ (2) 

dDifferentiate under integral and apply the chain rule denote dt by˙ 

dt

d �A� = 
� � 

ψ̇∗Aψ + ψ∗Ȧψ + ψ∗Aψ̇
� 
dτ (3) 

Evaluate the first and third terms by inserting ψ̇ = i
1 
� Hψ or the complex conjugate from equation (1). 

dt

d �A� = − 
i

1 
� 
Hψ∗Aψ + ψ∗Ȧψ + 

i

1 
� 
ψ∗AHψ dτ (4) 

=
1 
� � 

ψ∗AHψ − ψ∗HAψ + i�ψ∗Ȧψ 
� 
dτ (5)

i� 

rearranging 

i� 
dt

d �A� = ψ∗[A, H]ψ + i�ψ∗Ȧψ dτ 

or i�Ȧ = [A, H] + i� 
∂A 

(6)
∂t 

where (6) is understood to be a matrix equation. 
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C Matrix Elements of any Function of X and P 

For any vibrational problem, a harmonic oscillator basis set may be chosen. How are matrix elements of any function 
of X or P obtained? 

Let T define the transformation which diagonalizes H: 

(T†HT) = Eiδij . (7) 

T takes us to the energy basis. Let S define a different transformation which diagonalizes X. 

(S†XS)ij = Xiδij . (8) 

S takes us from the harmonic basis to a (strange) position basis. It can be shown that an operator corresponding 
to any rational power of X (or a power series in X) can be expressed as 

Xa/b = S(S†XS)a/bS† = S(Xiδij )a/bS† (9) 

where the meaning of a diagonal matrix to a rational power is obvious. This result could be proved by noting that 
any power of a diagonal matrix is still diagonal and that SS† = 1 (unit matrix). The Xa/b matrix must finally be 
transformed to the energy basis: 

Observable Xa/b matrix = T†S(S†XS)a/bS†T (10) 


