5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1982

Problem Set #4 ANSWERS

- 1. The corners of a cube are numbered 1, 2, 3, 4 clockwise around the top face of the cube, and 5, 6, 7, 8 clockwise around the bottom face, corner 5 lying under corner 1, corner 6 under corner 2, and so on. A face center is denoted by the two numbers of the corners between which a face diagonal can be drawn which passes through that face center (for example, either 13 or 24 would denote the center of the top face).
 - (a) The structures of several kinds of AB_4 molecules are described as follows with the above numbering system. The *A*-atom is placed at the center of the cube, and the *A*—*B* bond distances are given by the cube dimensions. However, the *B*-atoms are not necessarily all equivalent, the actual equivalence being determined by the symmetry elements remaining in the AB_4 structures.
 - (i) $AB_4(1, 2, 3, 4)$
 - (ii) $AB_4(1, 3, 5, 7)$
 - (iii) $AB_4(1, 3, 6, 8)$
 - (iv) $AB_4(1, 5, 16, 18)$
 - (v) *AB*₄(13, 36, 68, 18)

Give the point-group symbol for each AB_4 structure (for example, $C_{3\nu}$, D_{6h} , and so on).

(b) Classify the five molecules of Part (a) as to type of molecular rotator (linear, symmetrical top, and so

on).

Answer: (i) Prolate Symmetric Top (ii) Asymmetric Top (iii) Spherical Top (iv) Asymmetric Top (v) Oblate Symmetric Top (c) Which of the five molecules of Part (a) will give a pure-rotational spectrum in the far-infrared or microwave region? Which will give a pure-rotational Raman effect?

Answer:
Pure Rotation in Far IR or Microwave: (i) and (iv)
Pure Rotational Raman: (i), (ii), (iv), and (v)

2. The harmonic oscillator (mass *m*) in two dimensions has a potential energy *V* expressed in polar coordinates *r*, θ , of the general form $2V = k_1 r^2 \cos^2 \theta + k_2 r^2 \sin^2 \theta$, where k_1 and k_2 are force constants. For the special case $k_1 = k_2 = k$, the oscillator has a single frequency $v = (k/m)^{1/2}/2\pi$, and its Schrödinger equation has solutions of the form

$$\psi_{v,\ell} = N_{v,\ell} \exp\left(\frac{-\alpha r^2}{2}\right) \exp(i\ell\theta) P(r)$$

where v, ℓ are quantum numbers ($v = 0, 1, 2, ..., \infty$; $\pm \ell = 0, 2, 4, ..., v$ for v even, $\pm \ell = 1, 3, 5, ..., v$ for v odd); $N_{v,\ell}$ is a normalization constant; $\alpha = 4\pi^2 mv/h$; P(r), a polynomial in r only, depends for its form on the values of v and ℓ and is an even function for even v, odd for odd v.

(a) The energy levels of this two-dimensional oscillator are $E_v = (v + 1)hv$. What is the degeneracy of the

v–th level? **Answer:**

What is degeneracy of vth level of 2D Harmonic Oscillator Degeneracy \Rightarrow # of ℓ states! v odd $\Rightarrow \ell = \pm 1, \pm 3, \pm 5, \dots, \pm v$ v even $\Rightarrow \ell = 0, \pm 2, \pm 4, \dots, \pm v$ \therefore degeneracy = v + 1

(b) Find
$$N_{v,\ell}$$
 for $v = 1$, $\ell = +1$, for which $P(r) = \alpha^{1/2}r$.

Answer: $N_{v,\ell}$ = normalization constant Find $N_{1,+1}$ = "N"

$$\rho(r) = \sqrt{\alpha r}$$

$$\psi_{1,+1} = N \exp\left(\frac{-\alpha r^2}{2}\right) \exp(i\theta) \sqrt{\alpha r}$$

$$\int_0^\infty \int_0^{2\pi} \psi_{11}^* \psi_{11} r dr d\theta = 1 = \int_0^\infty \int_0^{2\pi} |N|^2 e^{-\alpha r^2} e^{-i\theta} e^{i\theta} (\alpha r^2) r dr d\theta$$

$$1 = 2\pi \int_0^\infty |N|^2 e^{-\alpha r^2} \alpha r^3 dr = \frac{2\pi |N|^2}{\alpha} \int_0^\infty e^{-x^2} x^3 dx$$

$$= \frac{2\pi}{\alpha} |N|^2 \frac{1}{2} = \frac{\pi}{\alpha} |N|^2 = 1$$

$$\therefore \quad |N_{11}| = \sqrt{\frac{\alpha}{\pi}}$$

(c) Show that any two ψ 's of the same *v* but different ℓ are orthogonal.

Answer: $\int_{0}^{\infty} \int_{0}^{2\pi} \psi_{\nu\ell'} \psi_{\nu\ell} r dr d\theta = N_{\nu\ell'} N_{\nu\ell} \int_{0}^{\infty} e^{-\alpha r^{2}} \rho^{2}(r) r dr \int_{0}^{2\pi} e^{i(\ell-\ell')\theta} d\theta = 0$ Since $\ell - \ell' \neq 0$ therefore any $\psi_{\nu\ell} + \psi_{\nu\ell'}$ are orthogonal if $\ell \neq \ell'$.

(d) Find the average value of the angular momentum p_{θ} for any state v, ℓ .

Answer:

Answer:

$$\begin{split} \langle p_{\theta} \rangle &= ?\\ \langle p_{\theta} \rangle_{\nu\ell} &= \int_{0}^{\infty} \int_{0}^{2\pi} \psi_{\nu\ell}^{\star} p \theta \psi r dr d\theta = \int_{0}^{\infty} \int_{0}^{2\pi} \psi_{\nu\ell}^{\star} \left(-i\hbar \frac{\partial}{\partial \theta} \right) \psi_{\nu\ell} r dr d\theta \\ &= \hbar \ell \int_{0}^{\infty} \int_{0}^{2\pi} \psi_{\nu\ell}^{\star} \psi_{\nu\ell} r dr d\theta = \hbar \ell \end{split}$$

(e) Find the average value of r^{-2} for the state v = 1, $\ell = +1$.

$$\left\langle r^{-2} \right\rangle_{11} = \int_0^\infty \int_0^{2\pi} \psi_{11}^* r^{-2} \psi_{11} r dr d\theta = N_{11}^2 \int_0^\infty \int_0^{2\pi} e^{-\alpha r^2} \alpha r dr d\theta = \alpha = \frac{4\pi^2 m \nu}{h} = \frac{k}{h\nu} \\ \left\langle p_\theta^2 \right\rangle_{\nu\ell} = \hbar^2 \ell^2 \Rightarrow \left\langle p_\theta^2 \right\rangle_{11} = \hbar^2 \\ E_{\text{rot}_{11}} = \frac{1}{2m} \frac{\left\langle p_\theta^2 \right\rangle_{11}}{\left\langle r^2 \right\rangle_{11}} = \frac{\hbar^2}{2m} \left(\frac{4\pi^2 m \nu}{h} \right) = \frac{h\nu}{2} \\ E_{\text{vib}}(\nu = 1) = \frac{3}{2}h\nu \qquad E_{\text{total}} = E_{\text{vib}} + E_{\text{rot}} = 2h\nu \\ \text{From (a) } E = (\nu + 1)h\nu = 2h\nu \end{cases}$$

Substitute the results of the above in the equation for the relationship between *E* and p_{θ} in the plane rotor and find *E* for the state v = 1, $\ell = +1$. Explain the difference between this value of *E* and that given by the equation of Part (a).

- 3. The carbon suboxide molecule C_3O_2 , is believed to be linear and symmetrical.
 - (a) Classify the normal vibrations of C_3O_2 according to the symmetry species of point group $D_{\infty h}$.

(b) How many polarized lines should appear in the vibrational Raman spectrum? How many fundamental infrared bands should have *P*-, *Q*-, and *R*-branches?

Answer: According to the $D_{\infty h}$ character table:

$$\begin{array}{l} \Sigma_{g}^{+} & x^{2} + y^{2}, z^{2} \\ \Pi_{g} & (xz, yz) \\ \Delta_{g} & (x^{2} - y^{2}, xy) \end{array} \right\} \quad \text{Raman Active}$$

$$\begin{array}{c} \Sigma_{u}^{+} & z \\ \Pi_{u} & (x, y) \end{array} \} \quad \text{IR Active}$$

Therefore σ_g^+ 's; π_g 's $\Rightarrow 2$ polarized lines will appear in Raman IR \Rightarrow P, Q, R $\Rightarrow (xy)$ polarization $\Rightarrow \pi_u$ $2\pi_u$'s (each degenerate) $\Rightarrow 2$ Fundamental IR bands have P, Q, and R lines.

- (c) The ground electronic state of C₃O₂ is nondegenerate. What is the degeneracy of ψ_{mol} when C₃O₂ is in its ground electronic state with v₁ = v₂ = v₃ = v₄ = v₅ = v₆ = 0, v₇ = 1, and the rotational quantum number J = 5? The normal coordinate Q₇ is antisymmetric with respect to simultaneous interchange of all pairs of equivalent nuclei. What is the degeneracy of ψ_{mol} for the above state with J = 6 instead of 5?
 Answer: Degeneracy: (2J + 1)(interchange term) # of interchanges = (# C's)×(# O's)= 6
 ∴ Degeneracy = 6(2J + 1)
 - $J = 5 \Rightarrow \text{Deg} = 66$ $J = 6 \Rightarrow \text{Deg} = 78$
- 4. (a) Let ψ_a ≡ ψ_{v1=1}(Q₁)ψ_{v2=0}(Q₂) and ψ_b ≡ ψ_{v1=0}ψ_{v2=2} be the normalized harmonic-oscillator wave functions of a polyatomic molecule corresponding to excited vibrational states of unperturbed energies E_a and E_b. If these two states are in Fermi resonance, second-order non-degenerate theory can be applied. Assume that the interaction energies H'_{aa} and H'_{bb} are zero and that H'_{ab} arises from one or more anharmonic terms in the potential function. In a certain molecule, the levels ψ_a and ψ_b are observed to be in Fermi resonance, the transitions to the *perturbed* levels being observed at 1400 and 1500 cm⁻¹, whereas the level ψ_{v1=0}ψ_{v2=1} has an energy of 740 cm⁻¹ above the zero level (see diagram). Deduce the unperturbed E_a-value from the above data (H'_{ab} is to be evaluated from the data, not by integration).

Spring, 1982

Answer: 4(a), continued

$$\lambda = \frac{E_a + E_b}{2} \pm \frac{1}{2} \left[(E_a - E_b)^2 + 4 |\mathcal{H}_{ab}|^2 \right]^{1/2}$$

$$E_b = 2.740 = 1480 \text{ cm}^{-1} \text{ above } (0, 0)$$

$$\frac{1}{2} (E_a + E_b) = \frac{1400 + 1500}{2} = 1450 \text{ cm}^{-1} \qquad \text{center of gravity doesn't change}$$

$$\therefore E_a = 1420 \text{ cm}^{-1} \text{ above } (0, 0)$$

(b) The *intensity* of the Raman line for the transition from the ground state $\psi_{0,0}$ to the *unperturbed* state ψ_a in the absence of Fermi resonance is proportional to the square of the matrix element

$$\left\langle \psi_{0,0} \left| \frac{\partial \alpha}{\partial Q_1} Q_1 \right| \psi_a \right\rangle$$

where $\partial \alpha / \partial Q_1$ is a non-zero constant. The corresponding matrix element

$$\left\langle \psi_{0,0} \left| \frac{\partial \alpha}{\partial Q_2} Q_2 \right| \psi_b \right\rangle$$

is zero because $\Delta v_2 = 2$. Find the ratio of the intensities of the two Raman lines for the transitions from state $|\psi_{00}\rangle$ to the *perturbed* states $|\psi_A\rangle$ and $|\psi_B\rangle$.

Answer: Defining
$$\lambda_a, \lambda_b$$
:

$$\lambda_a = \frac{E_a + E_b}{2} - \frac{1}{2} \left[(E_a - E_b)^2 + 4 |\mathcal{H}_{ab}|^2 \right]^{1/2}$$

$$\lambda_b = \frac{E_a + E_b}{2} + \frac{1}{2} \left[(E_a - E_b)^2 + 4 |\mathcal{H}_{ab}|^2 \right]^{1/2}$$

$$|\psi_A\rangle = \left[\frac{\lambda_a - E_b}{2\lambda_b - (E_a + E_b)} \right]^{1/2} |\psi_b\rangle + \left[\frac{\lambda_a - E_a}{2\lambda_b - (E_a + E_b)} \right]^{1/2} |\psi_a\rangle \quad \text{(normalized)}$$

$$|\psi_B\rangle = \left[\frac{\lambda_b - E_a}{2\lambda_b - (E_a + E_b)} \right]^{1/2} |\psi_b\rangle - \left[\frac{\lambda_a - E_b}{2\lambda_b - (E_a + E_b)} \right]^{1/2} |\psi_a\rangle \quad \text{(normalized)}$$

$$\frac{I_A}{I_B} = \frac{\left| \left\langle \psi_{00} \left| \frac{\partial \alpha}{\partial Q} \right| \psi_A \right\rangle \right|^2}{\left| \left\langle \psi_{00} \left| \frac{\partial \alpha}{\partial Q_1} \right| \psi_a \right\rangle \right|^2} \frac{\lambda_b - E_a}{\lambda_b - E_b}$$

$$= \frac{\lambda_b - E_a}{\lambda_b - E_b} = \frac{1500 - 1420}{1500 - 1480} = 4$$

$$\therefore \text{ Ratio of intensities: } |\psi_{00}\rangle \rightarrow |\psi_A\rangle : |\psi_{00}\rangle \rightarrow |\psi_B\rangle = 4 : 1$$

5. ${}^{16}O^{12}C^{32}S$ is a linear molecule. The bond lengths are

$$r_{\rm CO} = 1.16$$
Å $r_{\rm CS} = 1.56$ Å

Spring, 1982

and the observed fundamental vibrational frequencies are

- $v_1 = 858.9 \text{ cm}^{-1} \text{ stretch}$
- $v_2 = 520.4 \text{ cm}^{-1} \text{ bend}$
- $v_3 = 2062.2 \text{ cm}^{-1} \text{ stretch.}$
- (a) Obtain k_{CS} , k_{CO} , and $k_{\theta}[r_{CO}r_{CS}]^{-1}$ in dynes/cm.

Answer: Assume $k_{CO} > k_{CS}$. Let $\lambda_1 = 4\pi^2 v_1^2$, $\lambda_3 = 4\pi^2 v_3^2$ $\lambda_1 + \lambda_3 = k_{CS} \left(\frac{1}{m_C} + \frac{1}{m_S}\right) + k_{CO} \left(\frac{1}{m_C} + \frac{1}{m_O}\right)$ $\lambda_1 \lambda_3 = \frac{m_C + m_S + m_O}{m_C m_S m_O} k_{CS} k_{CO}$ $\therefore k_{CS} = \frac{1}{2} (\lambda_1 + \lambda_3) \left(\frac{1}{m_C} + \frac{1}{m_S}\right)^{-1} \left[1 \pm \left(1 - \frac{4\left(\frac{1}{m_C} + \frac{1}{m_S}\right)\left(\frac{1}{m_C} + \frac{1}{m_O}\right)\lambda_1 \lambda_3 m_C m_S m_O}{(\lambda_1 + \lambda_3)^2 (m_C + m_S + m_O)}\right)^{1/2}\right]$ $m_C = 12 \text{ amu}$ $m_S = 32 \text{ amu}$ $m_O = 16 \text{ amu}$ $\therefore k_{CS} = 8.07 \times 10^5 \text{ dynes/cm or } 1.76 \times 10^6 \text{ dynes/cm} \qquad \text{but } k_{CO} > k_{CS} \Rightarrow$ $k_{CS} = 8.07 \times 10^5 \text{ dynes/cm}$ $k_{CO} = \lambda_1 \lambda_3 \frac{m_C m_S m_O}{m_C + m_S + m_O} \frac{1}{k_{CS}} = 1.39 \times 10^6 \text{ dynes/cm}$

Note that this assumption is confirmed by CO₂, and CS₂ in which $k_{CO} = 1.42 \times 10^6$ dynes/cm and $k_{CS} = 8.10 \times 10^5$ dynes/cm, respectively.

$$k_{\theta}[r_{\rm CO}r_{\rm CS}]^{-1} = \left[\frac{r_{\rm CO}^2}{m_{\rm O}} + \frac{r_{\rm CS}^2}{m_{\rm S}} + \frac{(r_{\rm CO} + r_{\rm CS})^2}{m_{\rm S}}\right]^{-1} r_{\rm CO}r_{\rm CS}4\pi^2 v_2^2$$

$$\therefore k_{\theta}[r_{\rm CO}r_{\rm CS}]^{-1} = 3.72 \times 10^4 \text{ dynes/cm.}$$

(b) What are the amplitudes for C-O and C-S stretch in v_1 ?

(c) What are the vibrational frequencies for ${}^{18}O^{12}C^{32}S?$

Answer: For isotopically shifted ¹⁸O¹²C³²S, the forces involved are the same (k_{CO} , k_{CS} , k_{θ}), but the masses are different, so that different frequencies are obtained.

 $\lambda_1 + \lambda_3 = (8.07 \times 10^5) \left(\frac{1}{12} + \frac{1}{32} \right) (1.66 \times 10^{-24})^{-1} + (1.39 \times 10^6) \left(\frac{1}{12} + \frac{1}{18} \right) (1.66 \times 10^{-24})^{-1}$ = 1.72 × 10²⁹ sec⁻¹ (this formula is on page 6) $\lambda_1 \lambda_3 = 3.65 \times 10^{57} \text{sec}^{-1}$

Answer: 5(c), continued

$$\nu = \left[\frac{1.72 \times 10^{29}}{8\pi^2} \left(1 \pm \sqrt{1 - \frac{4(3.65 \times 10^{57})}{(1.72 \times 10^{24})^2}} \right) \right]^{1/2} \sec^{-1} \frac{1}{3 \times 10^{10} \text{ cm/sec}}$$

$$= 835 \text{ cm}^{-1}, 2035 \text{ cm}^{-1}$$

$$\therefore \nu_1 = 835 \text{ cm}^{-1} \text{ and } \nu_3 = 2035 \text{ cm}^{-1}$$

$$\nu_2 = \left[\frac{k_{\theta} [r_{\text{CO}} r_{\text{CS}}]^{-1}}{4\pi^2 r_{\text{CO}} r_{\text{CS}}} \left(\frac{r_{\text{CO}}^2}{m_{\text{O}}} + \frac{r_{\text{CS}}^2}{m_{\text{S}}} + \frac{(r_{\text{CO}} + r_{\text{CS}})^2}{m_{\text{C}}} \right) \right]^{1/2} \sec^{-1} \frac{1}{3 \times 10^{10} \text{ cm/sec}}$$

$$\nu_2 = 515 \text{ cm}^{-1}.$$