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Problem Set #4 ANSWERS 

1.	 The corners of a cube are numbered 1, 2, 3, 4 clockwise around the top face of the cube, and 5, 6, 7, 8 

clockwise around the bottom face, corner 5 lying under corner 1, corner 6 under corner 2, and so on. A face 

center is denoted by the two numbers of the corners between which a face diagonal can be drawn which passes 

through that face center (for example, either 13 or 24 would denote the center of the top face). 

(a) The structures of several kinds of AB4 molecules are described as follows with the above numbering 

system. The A–atom is placed at the center of the cube, and the A—B bond distances are given by the 

cube dimensions. However, the B–atoms are not necessarily all equivalent, the actual equivalence being 

determined by the symmetry elements remaining in the AB4 structures. 

(i) AB4(1, 2, 3, 4) 

(ii) AB4(1, 3, 5, 7) 

(iii) AB4(1, 3, 6, 8) 

(iv) AB4(1, 5, 16, 18) 

(v) AB4(13, 36, 68, 18)


Give the point-group symbol for each AB4 structure (for example, C3v, D6h, and so on).


Answer: 
B B	 B

BB 

B Td(i) A C4v 
(ii) A D2h (iii) A 

B B B B B B 

BB


B

A 
C2v

(v) A
(iv) D4h


B

B	

B 
B B 

(b) Classify the five molecules of Part (a) as to type of molecular rotator (linear, symmetrical top, and so 

on). 
Answer: 
(i) Prolate Symmetric Top 
(ii) Asymmetric Top 
(iii) Spherical Top 
(iv) Asymmetric Top 
(v) Oblate Symmetric Top 
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(c) Which of the five molecules of Part (a) will give a pure-rotational spectrum in the far-infrared or mi

crowave region? Which will give a pure-rotational Raman effect? 

Answer: 
Pure Rotation in Far IR or Microwave: (i) and (iv)

Pure Rotational Raman: (i), (ii), (iv), and (v)


2.	 The harmonic oscillator (mass m) in two dimensions has a potential energy V expressed in polar coordinates r, 

θ, of the general form 2V = k1r2 cos2 θ + k2r2 sin2 θ, where k1 and k2 are force constants. For the special case 

k1 = k2 = k, the oscillator has a single frequency v = (k/m)1/2/2π, and its Schrödinger equation has solutions 

of the form 
2(

−αr
) 

ψv,ℓ = Nv,ℓ exp exp(iℓθ)P(r)
2 

where v, ℓ are quantum numbers (v = 0, 1, 2, . . . , ∞; ±ℓ = 0, 2, 4, . . . , v for v even, ±ℓ = 1, 3, 5, . . . v for v odd); 

Nv,ℓ is a normalization constant; α = 4π2mv/h; P(r), a polynomial in r only, depends for its form on the values 

of v and ℓ and is an even function for even v, odd for odd v. 

(a) The energy levels of this two-dimensional oscillator are Ev = (v + 1)hv. What is the degeneracy of the 

v–th level? 
Answer: 
What is degeneracy of vth level of 2D Harmonic Oscillator Degeneracy # of ℓ states! ⇒
v odd ℓ = ±1, ±3, ±5, . . . , ±v⇒
v even ℓ = 0, ±2, ±4, . . . , ±v⇒
∴ degeneracy = v + 1 

(b) Find Nv,ℓ for v = 1, ℓ = +1, for which P(r) = α1/2r. 

Answer: 
Nv,ℓ = normalization constant 
Find N1,+1 = “N” 

ρ(r) = 
√
αr 

2 

ψ1,+1 = N exp 

(
−αr

) 
exp(iθ) 

√
αr 

2 
∫ 

0 

∞ ∫ 

0

2π

ψ∗ = 

∫ 

0 

∞ ∫ 

0

2π 

|N| 2e−αr2 
e−iθeiθ(αr2)rdrdθ11ψ11rdrdθ 1 = 

2 
21 = 2π 

∫ 

0 

∞
|N| e−αr2 

αr3dr = 
2π
α

|N| ∫ 

0 

∞ 
e−x2 

x3dx 

2π 2 1 π 2 = N = N = 1 
α 
| |

2 α
| |

√
α 

∴ N11 =| |
π 
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(c) Show that any two ψ’s of the same v but different ℓ are orthogonal. 

Answer: ∫ ∞ ∫ 2π

ψvℓ′ ψvℓrdrdθ = Nvℓ′ Nvℓ 

∫ ∞ 
e−αr2 

ρ2(r)rdr 
∫ 2π 

ei(ℓ−ℓ′)θdθ = 0 
0 0 0 0 

Since ℓ − ℓ′ � 0 therefore any ψvℓ + ψvℓ′ are orthogonal if ℓ � ℓ′ . 

(d) Find the average value of the angular momentum pθ for any state v, ℓ. 

Answer: 

〈pθ〉 =? 
∫ ∞ ∫ 2π ∫ ∞ ∫ 2π ( 

∂ 
) 

〈pθ〉vℓ = ψv
⋆
ℓ pθψrdrdθ = ψv

⋆
ℓ −iℏ 

∂θ 
ψvℓrdrdθ 

0 0 0 0 ∫ ∞ ∫ 2π 

ψ⋆ = ℏℓ vℓψvℓrdrdθ = ℏℓ 
0 0 

(e) Find the average value of r−2 for the state v = 1, ℓ = +1. 

Answer: 

〈
r−2

〉 
= 

∫ ∞ ∫ 2π

ψ⋆ ψ11rdrdθ = N2 
∫ ∞ ∫ 2π 

e−αr2 
αrdrdθ = α = 

4π2mν 
= 

k 
11 0 0

11r−2
11 

0 0 h hν 
2 2 2 2

〈
pθ 

〉 

vℓ 
= ℏ ℓ2 ⇒ 

〈
pθ 

〉 

11 
= ℏ

1 
〈
p2 
θ 

〉 

11 ℏ
2 (4π2mν

) 
hν


Erot11 = 2m 
〈
r2〉

11 
= 

2m h 
= 

2


Evib(v = 1) = 3 hν Etotal = Evib + Erot = 2hν2 
From (a) E = (v + 1)hv = 2hv 

Substitute the results of the above in the equation for the relationship between E and pθ in the plane rotor 

and find E for the state v = 1, ℓ = +1. Explain the difference between this value of E and that given by the 

equation of Part (a). 



̂

}
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3. The carbon suboxide molecule C3O2, is believed to be linear and symmetrical. 

(a) Classify the normal vibrations of C3O2 according to the symmetry species of point group D∞h. 

Answer: 
r1 r2 r3 r4 

O C C C O 

θ1 θ2 θ3 

# of modes = 3N−5 = 10 
4 stretching modes 
3 pairs of bending modes 
Point Group = D∞h 

î(δr1) = δr4, î(δr2) = δr3 

σv(δri) = 
Sketches: 

δri → no σg
− or σu

− stretching modes 

δr1 + δr4 : σ+ g 

δr1 − δr4 : σ+ u 

δr2 + δr3 : σ+ g 

δr2 − δr3 : σ+ u 

Bending doubly degenerate π symmetry⇒ ⇒
î(δθ1) = −δθ3, î(δθ2) = δθ2, î(δθ3) = −δθ1


Modes: must be orthogonal to δθ1 − δθ3 πg


δθ1 + 
√

2δθ2 + δθ3 πu 

δθ1 −
√

2δθ2 + δθ3 πu 

(b) How many polarized lines should appear in the vibrational Raman spectrum? How many fundamental 

infrared bands should have P–, Q–, and R–branches?


Answer: According to the D∞h character table:




Σ+ g x2 + y2 , z2 

Πg (xz, yz) 
Δg (x2 − y2 , xy) 

Raman Active 

Σ+ u z 
IR Active 

Πu (x, y) 

Therefore σ+ g ’s ; πg’s 2 polarized lines will appear in Raman⇒
IR P, Q, R (xy) polarization πu⇒ ⇒ ⇒
2πu’s (each degenerate) 2 Fundamental IR bands have P, Q, and R lines.⇒
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(c) The ground electronic state of C3O2 is nondegenerate. What is the degeneracy of ψmol when C3O2 is in 

its ground electronic state with v1 = v2 = v3 = v4 = v5 = v6 = 0, v7 = 1, and the rotational quantum 

number J = 5? The normal coordinate Q7 is antisymmetric with respect to simultaneous interchange of 

all pairs of equivalent nuclei. What is the degeneracy of ψmol for the above state with J = 6 instead of 5? 
Answer: Degeneracy: (2J + 1)(interchange term)

# of interchanges = (# C’s)×(# O’s)= 6

∴ Degeneracy = 6(2J + 1)


J = 5 Deg = 66⇒
J = 6 Deg = 78⇒

4.	 (a) Let ψa ≡ ψv1=1(Q1)ψv2=0(Q2) and ψb ≡ ψv1=0ψv2=2 be the normalized harmonic-oscillator wave functions 

of a polyatomic molecule corresponding to excited vibrational states of unperturbed energies Ea and Eb. 

If these two states are in Fermi resonance, second-order non-degenerate theory can be applied. Assume 

that the interaction energies H′ and H′ are zero and that H′ arises from one or more anharmonicaa bb ab 

terms in the potential function. In a certain molecule, the levels ψa and ψb are observed to be in Fermi 

resonance, the transitions to the perturbed levels being observed at 1400 and 1500 cm−1, whereas the 

level ψv1=0ψv2=1 has an energy of 740 cm−1 above the zero level (see diagram). Deduce the unperturbed 

Ea–value from the above data (H′ is to be evaluated from the data, not by integration). ab 

Answer: ∣∣∣∣∣∣
Ea − λ Hab 

∣∣∣∣∣∣ = 0 Hab	 Eb − λ 

Find Ea 

(Ea − λ)(Eb − λ) − |Hab| 2 = 0 = λ2 − (Ea + Eb)λ − |Hab| 2 
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Answer: 4(a), continued 

λ = 
Ea + 

2 
Eb ±

2
1 [

(Ea − Eb)2 + 4|Hab| 2
]1/2 

Eb = 2.740 = 1480 cm−1 above (0, 0) 

1 1400 + 1500
(Ea + Eb) = = 1450 cm−1 center of gravity doesn’t change 

2 2

∴ Ea = 1420 cm−1 above (0, 0)


(b) The intensity of the Raman line for the transition from the ground state ψ0,0 to the unperturbed state ψa 

in the absence of Fermi resonance is proportional to the square of the matrix element 
〈 ∣∣∣∣∣

∂α 
∣∣∣∣∣

〉 

ψ0,0 Q1 ψa 
∂Q1


where ∂α/∂Q1 is a non-zero constant. The corresponding matrix element

〈 ∣∣∣∣∣

∂α 
∣∣∣∣∣

〉


ψ0,0 Q2 ψb

∂Q2 

is zero because Δv2 = 2. Find the ratio of the intensities of the two Raman lines for the transitions from 

state |ψ00〉 to the perturbed states |ψA〉 and |ψB〉. 
Answer: Defining λa, λb: 

λa = 
Ea + 

2 
Eb −

2
1 [

(Ea − Eb)2 + 4|Hab| 2
]1/2 

λb = 
Ea + 

2 
Eb 
+ 

2
1 [

(Ea − Eb)2 + 4|Hab| 2
]1/2 

|ψA〉 = 
[ 

2λb −
λa 

(
−
Ea

E
+ 

b 

Eb) 

]1/2 

|ψb〉 + 
[ 

2λb −
λa 

(
−
Ea

E
+ 

a 

Eb) 

]1/2 

|ψa〉 (normalized) 

[ 
λb − Ea 

]1/2 [ 
λa − Eb 

]1/2 

|ψB〉 = 2λb − (Ea + Eb) 
|ψb〉 − 2λb − (Ea + Eb) 

|ψa〉 (normalized) 

∣∣∣∣∣
〈 ∣∣∣∣ ∂α 

∣∣∣∣
〉∣∣∣∣∣

2 ∣∣∣∣∣
〈 ∣∣∣∣ ∂α 

∣∣∣∣
〉∣∣∣∣∣

2 

IA 
ψ00 ∂Q ψA ψ00 ∂Q1 

ψa λb − Ea 
2 2IB	

= ∣∣∣∣∣
〈 ∣∣∣∣ ∂α 

∣∣∣∣
〉∣∣∣∣∣
= ∣∣∣∣∣

〈 ∣∣∣∣ ∂α 
∣∣∣∣

〉∣∣∣∣∣
λb − Eb 

ψ00 ∂Q ψB ψ00 ∂Q1 
ψa 

λb − Ea 1500 − 1420 
= = = 4 
λb − Eb 1500 − 1480


∴ Ratio of intensities: = 4 : 1
|ψ00〉 → |ψA〉 : |ψ00〉 → |ψB〉

5.	 16O12C32S is a linear molecule. The bond lengths are


rCO = 1.16Å


rCS = 1.56Å 
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and the observed fundamental vibrational frequencies are 

ν1 = 858.9 cm−1 stretch 

ν2 = 520.4 cm−1 bend 

ν3 = 2062.2 cm−1 stretch. 

(a) Obtain kCS, kCO, and kθ[rCOrCS]−1 in dynes/cm. 

Answer: 
Assume kCO > kCS.

Let λ1 = 4π2ν1

2, λ3 = 4π2ν3
2


( 
1 1 

) ( 
1 1 

) 
λ1 + λ3 = kCS + + kCO + 

mC mS mC mO 
mC + mS + mO


λ1λ3 = kCSkCO
mCmSmO 

1 
( 

1 1 
)−1 




4 
( 

m
1
C 
+ m

1
S 

) ( 
m
1
C 
+ m

1
O 

) 
λ1λ3mCmSmO 


1/2∴ kCS = 2

(λ1 + λ3) 
mC 
+ 

mS
1 ± 1 − 

(λ1 + λ3)2(mC + mS + mO)    

mC = 12 amu 

mS = 32 amu 

mO = 16 amu 

∴ kCS = 8.07 × 105dynes/cm or 1.76 × 106dynes/cm but kCO > kCS ⇒ 
kCS = 8.07 × 105dynes/cm 

kCO = λ1λ3 
mCmSmO 1 

= 1.39 × 106dynes/cm 
mC + mS + mO kCS 

Note that this assumption is confirmed by CO2, and CS2 in which kCO = 1.42 × 106dynes/cm and 
kCS = 8.10 × 105dynes/cm, respectively. 

2 2 −1 

kθ[rCOrCS]−1 = 


rCO 
+ 

rCS 
+ 

(rCO + rCS)2 
 rCOrCS4π2ν2

2  mO mS mS 
 

∴ kθ[rCOrCS]−1 = 3.72 × 104dynes/cm. 
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(b) What are the amplitudes for C-O and C-S stretch in ν1? 

Answer: Amplitude change: Look at fractional bond change

O rCO C rCS S
A1 A2


(kCO − λ1µ11)A1 − λ1µ12A2 = 0 

∴ A2 = 
(kCO − λ1µ11) 

A1
λ1µ12 

A2
1 + A

2
2 = 1 normalizations 


(
(kCO − λ1µ11 

)2 
−1/2 

∴ A1 = + 1 λ1µ12 
 

µ11 = 
mO(mC + mS) 

= 11.73 amu = 1.948 × 10−23g. 
mO + mC + mS 

λ1 = 4π2ν2 = 2.912 × 107 cm−2 = 2.621 × 1028 sec−2 
1 

µ12 = 
mO + mS 

= 8.53 amu = 1.417 × 10−23g. 
mO + mS + mC 


(
1.39 − 0.511 

)2 
−1/2 

A1 = + 1 = 0.389 0.371  

A2 = 

√
1 − A2 = 0.9211 

∴ ACO = 0.389 rCO = 0.45Å· 
ACS = 0.922 rCS = 1.43Å.· 

(c) What are the vibrational frequencies for 18O12C32S? 

Answer: For isotopically shifted 18O12C32S, the forces involved are the same (kCO, kCS, kθ), but the 
masses are different, so that different frequencies are obtained. 

( 
1 1 

) ( 
1 1 

) 
λ1 + λ3 = (8.07 × 105) + (1.66 × 10−24)−1 + (1.39 × 106) + (1.66 × 10−24)−1 

12 32 12 18 

= 1.72 × 1029sec−1 (this formula is on page 6) 

λ1λ3 = 3.65 × 1057sec−1 
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Answer: 5(c), continued 


1.72 × 1029 



√ 
4(3.65 × 1057) 





1/2
1


ν =  8π2  1 ± 1 −
(1.72 × 1024)2  sec−1

3 × 1010cm/sec


= 835 cm−1 , 2035 cm−1 

∴ ν1 = 835 cm−1 and ν3 = 2035 cm−1 

2 2 1/2kθ[rCOrCS]−1 


rCO rCS (rCO + rCS)2 

 1 

ν2 = + + sec−1  4π2rCOrCS 
 mO mS mC 

 3 × 1010cm/sec 

ν2 = 515 cm−1 . 


