MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Chemistry 5.76
 Spring 1982

Problem Set \#4 ANSWERS

1. The corners of a cube are numbered $1,2,3,4$ clockwise around the top face of the cube, and $5,6,7,8$ clockwise around the bottom face, corner 5 lying under corner 1, corner 6 under corner 2 , and so on. A face center is denoted by the two numbers of the corners between which a face diagonal can be drawn which passes through that face center (for example, either 13 or 24 would denote the center of the top face).
(a) The structures of several kinds of $A B_{4}$ molecules are described as follows with the above numbering system. The A-atom is placed at the center of the cube, and the $A-B$ bond distances are given by the cube dimensions. However, the B-atoms are not necessarily all equivalent, the actual equivalence being determined by the symmetry elements remaining in the $A B_{4}$ structures.
(i) $A B_{4}(1,2,3,4)$
(ii) $A B_{4}(1,3,5,7)$
(iii) $A B_{4}(1,3,6,8)$
(iv) $A B_{4}(1,5,16,18)$
(v) $A B_{4}(13,36,68,18)$

Give the point-group symbol for each $A B_{4}$ structure (for example, $C_{3 v}, D_{6 h}$, and so on).
Answer:
(i)

$\mathrm{C}_{4 \mathrm{v}}$
(ii)

$\mathrm{D}_{2 \mathrm{~h}} \quad$ (iii)

(iv)

$\mathrm{C}_{2 \mathrm{v}}$
(v)

$\mathrm{D}_{4 \mathrm{~h}}$
(b) Classify the five molecules of Part (a) as to type of molecular rotator (linear, symmetrical top, and so on).

[^0](c) Which of the five molecules of Part (a) will give a pure-rotational spectrum in the far-infrared or microwave region? Which will give a pure-rotational Raman effect?

Answer:

Pure Rotation in Far IR or Microwave: (i) and (iv)
Pure Rotational Raman: (i), (ii), (iv), and (v)
2. The harmonic oscillator (mass m) in two dimensions has a potential energy V expressed in polar coordinates r, θ, of the general form $2 V=k_{1} r^{2} \cos ^{2} \theta+k_{2} r^{2} \sin ^{2} \theta$, where k_{1} and k_{2} are force constants. For the special case $k_{1}=k_{2}=k$, the oscillator has a single frequency $v=(k / m)^{1 / 2} / 2 \pi$, and its Schrödinger equation has solutions of the form

$$
\psi_{v, \ell}=N_{v, \ell} \exp \left(\frac{-\alpha r^{2}}{2}\right) \exp (i \ell \theta) P(r)
$$

where v, ℓ are quantum numbers ($v=0,1,2, \ldots, \infty ; \pm \ell=0,2,4, \ldots, v$ for v even, $\pm \ell=1,3,5, \ldots v$ for v odd); $N_{v, \ell}$ is a normalization constant; $\alpha=4 \pi^{2} m v / h ; P(r)$, a polynomial in r only, depends for its form on the values of v and ℓ and is an even function for even v, odd for odd v.
(a) The energy levels of this two-dimensional oscillator are $E_{v}=(v+1) h v$. What is the degeneracy of the v-th level?
Answer:
What is degeneracy of $\mathrm{v}^{\text {th }}$ level of 2D Harmonic Oscillator Degeneracy $\Rightarrow \#$ of ℓ states!
v odd $\Rightarrow \ell= \pm 1, \pm 3, \pm 5, \ldots, \pm v$
v even $\Rightarrow \ell=0, \pm 2, \pm 4, \ldots, \pm v$
\therefore degeneracy $=v+1$
(b) Find $N_{v, \ell}$ for $v=1, \ell=+1$, for which $P(r)=\alpha^{1 / 2} r$.

$$
\begin{aligned}
& \text { Answer: } \\
& N_{v, \ell}=\text { normalization constant } \\
& \text { Find } N_{1,+1}=\text { " } N \text { " } \\
& \qquad \begin{aligned}
\rho(r) & =\sqrt{\alpha} r \\
\psi_{1,+1} & =N \exp \left(\frac{-\alpha r^{2}}{2}\right) \exp (i \theta) \sqrt{\alpha} r \\
\int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{11}^{*} \psi_{11} r d r d \theta & =1=\int_{0}^{\infty} \int_{0}^{2 \pi}|N|^{2} e^{-\alpha r^{2}} e^{-i \theta} e^{i \theta}\left(\alpha r^{2}\right) r d r d \theta \\
1 & =2 \pi \int_{0}^{\infty}|N|^{2} e^{-\alpha r^{2}} \alpha r^{3} d r=\frac{2 \pi|N|^{2}}{\alpha} \int_{0}^{\infty} e^{-x^{2} x^{3} d x} \\
& =\frac{2 \pi}{\alpha}|N|^{2} \frac{1}{2}=\frac{\pi}{\alpha}|N|^{2}=1 \\
\therefore \quad\left|N_{11}\right| & =\sqrt{\frac{\alpha}{\pi}}
\end{aligned}
\end{aligned}
$$

(c) Show that any two ψ 's of the same v but different ℓ are orthogonal.

Answer:

$$
\int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{\nu \ell^{\prime}} \psi_{v \ell} r d r d \theta=N_{v \ell^{\prime}} N_{\nu \ell} \int_{0}^{\infty} e^{-\alpha r^{2}} \rho^{2}(r) r d r \int_{0}^{2 \pi} e^{i\left(\ell-\ell^{\prime}\right) \theta} d \theta=0
$$

Since $\ell-\ell^{\prime} \neq 0$ therefore any $\psi_{\nu \ell}+\psi_{\nu \ell^{\prime}}$ are orthogonal if $\ell \neq \ell^{\prime}$.
(d) Find the average value of the angular momentum p_{θ} for any state v, ℓ.

Answer:

$$
\begin{aligned}
\left\langle p_{\theta}\right\rangle & =? \\
\left\langle p_{\theta}\right\rangle_{v \ell} & =\int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{v \ell}^{\star} p \theta \psi r d r d \theta=\int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{v \ell}^{\star}\left(-i \hbar \frac{\partial}{\partial \theta}\right) \psi_{v \ell} r d r d \theta \\
& =\hbar \ell \int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{v \ell}^{\star} \psi_{v \ell} r d r d \theta=\hbar \ell
\end{aligned}
$$

(e) Find the average value of r^{-2} for the state $v=1, \ell=+1$.

Answer:

$$
\begin{aligned}
& \left\langle r^{-2}\right\rangle_{11}=\int_{0}^{\infty} \int_{0}^{2 \pi} \psi_{11}^{\star} r^{-2} \psi_{11} r d r d \theta=N_{11}^{2} \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-\alpha r^{2}} \alpha r d r d \theta=\alpha=\frac{4 \pi^{2} m v}{h}=\frac{k}{h v} \\
& \left\langle p_{\theta}^{2}\right\rangle_{v \ell}=\hbar^{2} \ell^{2} \Rightarrow\left\langle p_{\theta}^{2}\right\rangle_{11}=\hbar^{2} \\
& E_{\mathrm{rot}_{11}}=\frac{1}{2 m} \frac{\left\langle p_{\theta}^{2}\right\rangle_{11}}{\left\langle r^{2}\right\rangle_{11}}=\frac{\hbar^{2}}{2 m}\left(\frac{4 \pi^{2} m v}{h}\right)=\frac{h v}{2} \\
& E_{\text {vib }}(v=1)=\frac{3}{2} h v \quad E_{\mathrm{total}}=E_{\mathrm{vib}}+E_{\mathrm{rot}}=2 h v \\
& \operatorname{From~(a)~} E=(v+1) h v=2 h v
\end{aligned}
$$

Substitute the results of the above in the equation for the relationship between E and p_{θ} in the plane rotor and find E for the state $v=1, \ell=+1$. Explain the difference between this value of E and that given by the equation of Part (a).
3. The carbon suboxide molecule $\mathrm{C}_{3} \mathrm{O}_{2}$, is believed to be linear and symmetrical.
(a) Classify the normal vibrations of $\mathrm{C}_{3} \mathrm{O}_{2}$ according to the symmetry species of point group $\mathrm{D}_{\infty h}$.

Answer:

Sketches:

$$
\begin{aligned}
& \delta r_{1}+\delta r_{4}: \sigma_{g}^{+} \\
& \delta r_{1}-\delta r_{4}: \sigma_{u}^{+} \\
& \delta r_{2}+\delta r_{3}: \sigma_{g}^{+} \\
& \delta r_{2}-\delta r_{3}: \sigma_{u}^{+}
\end{aligned}
$$

Bending \Rightarrow doubly degenerate $\Rightarrow \pi$ symmetry
$\hat{\boldsymbol{i}}\left(\delta \theta_{1}\right)=-\delta \theta_{3}, \hat{\boldsymbol{i}}\left(\delta \theta_{2}\right)=\delta \theta_{2}, \hat{\boldsymbol{i}}\left(\delta \theta_{3}\right)=-\delta \theta_{1}$
Modes: must be orthogonal to $\delta \theta_{1}-\delta \theta_{3}$

$$
\begin{array}{ll}
\delta \theta_{1}+\sqrt{2} \delta \theta_{2}+\delta \theta_{3} & \pi_{u} \\
\delta \theta_{1}-\sqrt{2} \delta \theta_{2}+\delta \theta_{3} & \pi_{u}
\end{array}
$$

(b) How many polarized lines should appear in the vibrational Raman spectrum? How many fundamental infrared bands should have $P-, Q-$, and R-branches?
Answer: According to the $\mathrm{D}_{\infty h}$ character table:

$\left.\begin{array}{cc} \Sigma_{g}^{+} & x^{2}+y^{2}, z^{2} \\ \Pi_{g} & (x z, y z) \\ \Delta_{g} & \left(x^{2}-y^{2}, x y\right) \end{array}\right\}$	Raman Active
$\left.\begin{array}{cc}\Sigma_{u}^{+} & z \\ \Pi_{u} & (x, y)\end{array}\right\}$	IR Active

Therefore σ_{g}^{+}'s $; \pi_{g}$'s $\Rightarrow 2$ polarized lines will appear in Raman
$\mathrm{IR} \Rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R} \Rightarrow(x y)$ polarization $\Rightarrow \pi_{u}$
$2 \pi_{u}$'s (each degenerate) $\Rightarrow 2$ Fundamental IR bands have P, Q, and R lines.
(c) The ground electronic state of $\mathrm{C}_{3} \mathrm{O}_{2}$ is nondegenerate. What is the degeneracy of $\psi_{\text {mol }}$ when $\mathrm{C}_{3} \mathrm{O}_{2}$ is in its ground electronic state with $v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=v_{6}=0, v_{7}=1$, and the rotational quantum number $J=5$? The normal coordinate Q_{7} is antisymmetric with respect to simultaneous interchange of all pairs of equivalent nuclei. What is the degeneracy of $\psi_{\text {mol }}$ for the above state with $J=6$ instead of 5 ?
Answer: Degeneracy: $(2 J+1)$ (interchange term)
\# of interchanges $=(\#$ C's $) \times(\#$ O's $)=6$
\therefore Degeneracy $=6(2 J+1)$

$$
\begin{aligned}
& J=5 \Rightarrow \operatorname{Deg}=66 \\
& J=6 \Rightarrow \operatorname{Deg}=78
\end{aligned}
$$

4. (a) Let $\psi_{a} \equiv \psi_{v_{1}=1}\left(Q_{1}\right) \psi_{v_{2}=0}\left(Q_{2}\right)$ and $\psi_{b} \equiv \psi_{v_{1}=0} \psi_{v_{2}=2}$ be the normalized harmonic-oscillator wave functions of a polyatomic molecule corresponding to excited vibrational states of unperturbed energies E_{a} and E_{b}. If these two states are in Fermi resonance, second-order non-degenerate theory can be applied. Assume that the interaction energies $H_{a a}^{\prime}$ and $H_{b b}^{\prime}$ are zero and that $H_{a b}^{\prime}$ arises from one or more anharmonic terms in the potential function. In a certain molecule, the levels ψ_{a} and ψ_{b} are observed to be in Fermi resonance, the transitions to the perturbed levels being observed at 1400 and $1500 \mathrm{~cm}^{-1}$, whereas the level $\psi_{v_{1}=0} \psi_{v_{2}=1}$ has an energy of $740 \mathrm{~cm}^{-1}$ above the zero level (see diagram). Deduce the unperturbed E_{a}-value from the above data ($H_{a b}^{\prime}$ is to be evaluated from the data, not by integration).

Answer:

$$
\left|\begin{array}{cc}
E_{a}-\lambda & \mathcal{H}_{a b} \\
\mathcal{H}_{a b} & E_{b}-\lambda
\end{array}\right|=0
$$

Find E_{a}

$$
\left(E_{a}-\lambda\right)\left(E_{b}-\lambda\right)-\left|\mathcal{H}_{a b}\right|^{2}=0=\lambda^{2}-\left(E_{a}+E_{b}\right) \lambda-\left|\mathcal{H}_{a b}\right|^{2}
$$

Answer: 4(a), continued

$$
\begin{aligned}
\lambda & =\frac{E_{a}+E_{b}}{2} \pm \frac{1}{2}\left[\left(E_{a}-E_{b}\right)^{2}+4\left|\mathcal{H}_{a b}\right|^{2}\right]^{1 / 2} \\
E_{b} & =2.740=1480 \mathrm{~cm}^{-1} \text { above }(0,0) \\
\frac{1}{2}\left(E_{a}+E_{b}\right) & =\frac{1400+1500}{2}=1450 \mathrm{~cm}^{-1} \quad \text { center of gravity doesn't change } \\
\therefore E_{a} & =1420 \mathrm{~cm}^{-1} \text { above }(0,0)
\end{aligned}
$$

(b) The intensity of the Raman line for the transition from the ground state $\psi_{0,0}$ to the unperturbed state ψ_{a} in the absence of Fermi resonance is proportional to the square of the matrix element

$$
\left\langle\psi_{0,0}\right| \frac{\partial \alpha}{\partial Q_{1}} Q_{1}\left|\psi_{a}\right\rangle
$$

where $\partial \alpha / \partial Q_{1}$ is a non-zero constant. The corresponding matrix element

$$
\left\langle\psi_{0,0}\right| \frac{\partial \alpha}{\partial Q_{2}} Q_{2}\left|\psi_{b}\right\rangle
$$

is zero because $\Delta v_{2}=2$. Find the ratio of the intensities of the two Raman lines for the transitions from state $\left|\psi_{00}\right\rangle$ to the perturbed states $\left|\psi_{A}\right\rangle$ and $\left|\psi_{B}\right\rangle$.
Answer: Defining λ_{a}, λ_{b} :

$$
\begin{aligned}
\lambda_{a} & =\frac{E_{a}+E_{b}}{2}-\frac{1}{2}\left[\left(E_{a}-E_{b}\right)^{2}+4\left|\mathcal{H}_{a b}\right|^{2}\right]^{1 / 2} \\
\lambda_{b} & =\frac{E_{a}+E_{b}}{2}+\frac{1}{2}\left[\left(E_{a}-E_{b}\right)^{2}+4\left|\mathcal{H}_{a b}\right|^{1 / 2}\right]^{1 / 2} \\
\left|\psi_{A}\right\rangle & =\left[\frac{\lambda_{a}-E_{b}}{2 \lambda_{b}-\left(E_{a}+E_{b}\right)}\right]^{1 / 2}\left|\psi_{b}\right\rangle+\left[\frac{\lambda_{a}-E_{a}}{2 \lambda_{b}-\left(E_{a}+E_{b}\right)}\right]^{1 / 2}\left|\psi_{a}\right\rangle \quad \text { (normalized) } \\
\left|\psi_{B}\right\rangle & =\left[\frac{\lambda_{b}-E_{a}}{2 \lambda_{b}-\left(E_{a}+E_{b}\right)}\right]^{1 / 2}\left|\psi_{b}\right\rangle-\left[\frac{\lambda_{a}-E_{b}}{2 \lambda_{b}-\left(E_{a}+E_{b}\right)}\right]^{1 / 2}\left|\psi_{a}\right\rangle \quad \text { (normalized) } \\
\frac{I_{A}}{I_{B}} & =\frac{\left.\left|\left\langle\psi_{00}\right| \frac{\partial \alpha}{\partial Q}\right| \psi_{A}\right\rangle\left.\right|^{2}}{\left.\left|\left\langle\psi_{00}\right| \frac{\partial \alpha}{\partial Q}\right| \psi_{B}\right\rangle\left.\right|^{2}}=\frac{\left.\left|\left\langle\psi_{00}\right| \frac{\partial \alpha}{\partial Q_{1}}\right| \psi_{a}\right\rangle\left.\right|^{2}}{\left.\left|\left\langle\psi_{00}\right| \frac{\partial \alpha}{\partial Q_{1}}\right| \psi_{a}\right\rangle\left.\right|^{2} \frac{\lambda_{b}-E_{a}}{\lambda_{b}-E_{b}}} \\
& =\frac{\lambda_{b}-E_{a}}{\lambda_{b}-E_{b}}=\frac{1500-1420}{1500-1480}=4
\end{aligned}
$$

\therefore Ratio of intensities: $\left|\psi_{00}\right\rangle \rightarrow\left|\psi_{A}\right\rangle:\left|\psi_{00}\right\rangle \rightarrow\left|\psi_{B}\right\rangle=4: 1$
5. ${ }^{16} \mathrm{O}^{12} \mathrm{C}^{32} \mathrm{~S}$ is a linear molecule. The bond lengths are

$$
\begin{aligned}
& r_{\mathrm{CO}}=1.16 \AA \\
& r_{\mathrm{CS}}=1.56 \AA
\end{aligned}
$$

and the observed fundamental vibrational frequencies are
$v_{1}=858.9 \mathrm{~cm}^{-1}$ stretch
$v_{2}=520.4 \mathrm{~cm}^{-1}$ bend
$v_{3}=2062.2 \mathrm{~cm}^{-1}$ stretch.
(a) Obtain $\mathrm{k}_{\mathrm{CS}}, \mathrm{k}_{\mathrm{CO}}$, and $\mathrm{k}_{\theta}\left[r_{\mathrm{CO}} r_{\mathrm{CS}}\right]^{-1}$ in dynes $/ \mathrm{cm}$.

Answer:
Assume $k_{\mathrm{CO}}>k_{\mathrm{CS}}$.
Let $\lambda_{1}=4 \pi^{2} v_{1}^{2}, \quad \lambda_{3}=4 \pi^{2} v_{3}^{2}$

$$
\begin{gathered}
\lambda_{1}+\lambda_{3}=k_{\mathrm{CS}}\left(\frac{1}{m_{\mathrm{C}}}+\frac{1}{m_{\mathrm{S}}}\right)+k_{\mathrm{CO}}\left(\frac{1}{m_{\mathrm{C}}}+\frac{1}{m_{\mathrm{O}}}\right) \\
\lambda_{1} \lambda_{3}=\frac{m_{\mathrm{C}}+m_{\mathrm{S}}+m_{\mathrm{O}}}{m_{\mathrm{C}} m_{\mathrm{S}} m_{\mathrm{O}}} k_{\mathrm{CS}} k_{\mathrm{CO}} \\
\therefore k_{\mathrm{CS}}=\frac{1}{2}\left(\lambda_{1}+\lambda_{3}\right)\left(\frac{1}{m_{\mathrm{C}}}+\frac{1}{m_{\mathrm{S}}}\right)^{-1}\left[1 \pm\left(1-\frac{4\left(\frac{1}{m_{\mathrm{C}}}+\frac{1}{m_{\mathrm{S}}}\right)\left(\frac{1}{m_{\mathrm{C}}}+\frac{1}{m_{\mathrm{O}}}\right) \lambda_{1} \lambda_{3} m_{\mathrm{C}} m_{\mathrm{S}} m_{\mathrm{O}}}{\left(\lambda_{1}+\lambda_{3}\right)^{2}\left(m_{\mathrm{C}}+m_{\mathrm{S}}+m_{\mathrm{O}}\right)}\right)^{1 / 2}\right] \\
m_{\mathrm{C}}=12 \mathrm{amu} \\
m_{\mathrm{S}}=32 \mathrm{amu} \\
m_{\mathrm{O}}=16 \mathrm{amu} \\
\therefore k_{\mathrm{CS}}=8.07 \times 10^{5} \mathrm{dynes} / \mathrm{cm} \text { or } 1.76 \times 10^{6} \mathrm{dynes} / \mathrm{cm} \quad \text { but } \quad k_{\mathrm{CO}}>k_{\mathrm{CS}} \Rightarrow \\
k_{\mathrm{CS}}=8.07 \times 10^{5} \mathrm{dynes} / \mathrm{cm} \\
k_{\mathrm{CO}}=\lambda_{1} \lambda_{3} \frac{m_{\mathrm{C}} m_{\mathrm{S}} m_{\mathrm{O}}}{m_{\mathrm{C}}+m_{\mathrm{S}}+m_{\mathrm{O}}} \frac{1}{k_{\mathrm{CS}}}=1.39 \times 10^{6} \mathrm{dynes} / \mathrm{cm}
\end{gathered}
$$

Note that this assumption is confirmed by CO_{2}, and CS_{2} in which $k_{\mathrm{CO}}=1.42 \times 10^{6} \mathrm{dynes} / \mathrm{cm}$ and $k_{\mathrm{CS}}=8.10 \times 10^{5}$ dynes $/ \mathrm{cm}$, respectively.

$$
\begin{aligned}
& k_{\theta}\left[r_{\mathrm{CO}} r_{\mathrm{CS}}\right]^{-1}=\left[\frac{r_{\mathrm{CO}}^{2}}{m_{\mathrm{O}}}+\frac{r_{\mathrm{CS}}^{2}}{m_{\mathrm{S}}}+\frac{\left(r_{\mathrm{CO}}+r_{\mathrm{CS}}\right)^{2}}{m_{\mathrm{S}}}\right]^{-1} r_{\mathrm{CO}} r_{\mathrm{CS}} 4 \pi^{2} v_{2}^{2} \\
\therefore & k_{\theta}\left[r_{\mathrm{CO}} r_{\mathrm{CS}}\right]^{-1}=
\end{aligned}
$$

(b) What are the amplitudes for $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ stretch in v_{1} ?

Answer: Amplitude change: Look at fractional bond change
$\mathrm{O} \frac{r_{\mathrm{CO}}}{A_{1}} \mathrm{C} \frac{r_{\mathrm{CS}}}{A_{2}} \mathrm{~S}$

$$
\begin{aligned}
\left(k_{\mathrm{CO}}-\lambda_{1} \mu_{11}\right) A_{1} & -\lambda_{1} \mu_{12} A_{2}=0 \\
\therefore A_{2} & =\frac{\left(k_{\mathrm{CO}}-\lambda_{1} \mu_{11}\right)}{\lambda_{1} \mu_{12}} A_{1}
\end{aligned}
$$

$$
\begin{aligned}
A_{1}^{2}+A_{2}^{2} & =1 \quad \text { normalizations } \\
\therefore \quad A_{1} & =\left[\left(\frac{\left(k_{\mathrm{CO}}-\lambda_{1} \mu_{11}\right.}{\lambda_{1} \mu_{12}}\right)^{2}+1\right]^{-1 / 2} \\
\mu_{11} & =\frac{m_{\mathrm{O}}\left(m_{\mathrm{C}}+m_{\mathrm{S}}\right)}{m_{\mathrm{O}}+m_{\mathrm{C}}+m_{\mathrm{S}}}=11.73 \mathrm{amu}=1.948 \times 10^{-23} \mathrm{~g} . \\
\lambda_{1} & =4 \pi^{2} v_{1}^{2}=2.912 \times 10^{7} \mathrm{~cm}^{-2}=2.621 \times 10^{28} \mathrm{sec}^{-2} \\
\mu_{12} & =\frac{m_{\mathrm{O}}+m_{\mathrm{S}}}{m_{\mathrm{O}}+m_{\mathrm{S}}+m_{\mathrm{C}}}=8.53 \mathrm{amu}=1.417 \times 10^{-23} \mathrm{~g} .
\end{aligned}
$$

$$
A_{1}=\left[\left(\frac{1.39-0.511}{0.371}\right)^{2}+1\right]^{-1 / 2}=0.389
$$

$$
A_{2}=\sqrt{1-A_{1}^{2}}=0.921
$$

$$
\therefore \quad A_{\mathrm{CO}}=0.389 \cdot r_{\mathrm{CO}}=0.45 \AA
$$

$$
A_{\mathrm{CS}}=0.922 \cdot r_{\mathrm{CS}}=1.43 \AA .
$$

(c) What are the vibrational frequencies for ${ }^{18} \mathrm{O}^{12} \mathrm{C}^{32} \mathrm{~S}$?

Answer: For isotopically shifted ${ }^{18} \mathrm{O}^{12} \mathrm{C}^{32} \mathrm{~S}$, the forces involved are the same $\left(k_{\mathrm{CO}}, k_{\mathrm{CS}}, k_{\theta}\right)$, but the masses are different, so that different frequencies are obtained.

$$
\begin{aligned}
\lambda_{1}+\lambda_{3} & =\left(8.07 \times 10^{5}\right)\left(\frac{1}{12}+\frac{1}{32}\right)\left(1.66 \times 10^{-24}\right)^{-1}+\left(1.39 \times 10^{6}\right)\left(\frac{1}{12}+\frac{1}{18}\right)\left(1.66 \times 10^{-24}\right)^{-1} \\
& =1.72 \times 10^{29} \sec ^{-1} \quad \text { (this formula is on page 6) } \\
\lambda_{1} \lambda_{3} & =3.65 \times 10^{57} \mathrm{sec}^{-1}
\end{aligned}
$$

```
Answer: 5(c), continued
    \(v=\left[\frac{1.72 \times 10^{29}}{8 \pi^{2}}\left(1 \pm \sqrt{1-\frac{4\left(3.65 \times 10^{57}\right)}{\left(1.72 \times 10^{24}\right)^{2}}}\right)\right]^{1 / 2} \sec ^{-1} \frac{1}{3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}}\)
    \(=835 \mathrm{~cm}^{-1}, 2035 \mathrm{~cm}^{-1}\)
    \(\therefore \quad v_{1}=835 \mathrm{~cm}^{-1}\) and \(v_{3}=2035 \mathrm{~cm}^{-1}\)
    \(v_{2}=\left[\frac{k_{\theta}\left[r_{\mathrm{CO}} r_{\mathrm{CS}}\right]^{-1}}{4 \pi^{2} r_{\mathrm{CO}} r_{\mathrm{CS}}}\left(\frac{r_{\mathrm{CO}}^{2}}{m_{\mathrm{O}}}+\frac{r_{\mathrm{CS}}^{2}}{m_{\mathrm{S}}}+\frac{\left(r_{\mathrm{CO}}+r_{\mathrm{CS}}\right)^{2}}{m_{\mathrm{C}}}\right)\right]^{1 / 2} \sec ^{-1} \frac{1}{3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}}\)
    \(v_{2}=515 \mathrm{~cm}^{-1}\).
```


[^0]: Answer:
 (i) Prolate Symmetric Top
 (ii) Asymmetric Top
 (iii) Spherical Top
 (iv) Asymmetric Top
 (v) Oblate Symmetric Top

