MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Chemistry 5.76
 Spring 1985

Problem Set \#3

1 Hund's Coupling Cases.

(a) Write the case (a) e and f-symmetry 3×3 effective Hamiltonian matrices for the ${ }^{2} \Pi,{ }^{2} \Sigma^{+}$problem we have considered in Lecture. Include only the zeroth and first order matrix elements of $\mathbf{H}^{\mathrm{ROT}}$ and \mathbf{H}^{SO}. Show that the effective rotational constants for ${ }^{2} \Pi_{3 / 2}$ and ${ }^{2} \Pi_{1 / 2}$ are $B \pm B^{2} / A$ near the case (a) limit.
(b) Consider the case (b) limit where $A \ll B J$. Form the approximate case (b) eigenfunctions for ${ }^{2} \Pi$ as

$$
\left.\left.\psi_{ \pm}=2^{-1 / 2}\left[\left.\right|^{2} \Pi_{1 / 2}\right\rangle \pm\left.\right|^{2} \Pi_{3 / 2}\right\rangle\right]
$$

and re-express the full 3×3 matrix in this basis.
(i) You will find that both of the ${ }^{2} \Pi$ eigenstates follow a $B N(N+1)$ rotational energy level expression. Which group of states E_{+}, ψ_{+}or E_{-}, ψ_{-}corresponds to $N=J+1 / 2$ and which to $N=J-1 / 2$?
(ii) What is the ΔN selection rule for spin-orbit ${ }^{2} \Pi \sim^{2} \Sigma^{+}$perturbations?
(iii) What is the ΔN selection rule for $\mathrm{BJ} \cdot \mathrm{L}{ }^{2} \Pi \sim^{2} \Sigma^{+}$perturbations?
(c) Consider the case (c) limit for a " p-complex". This means that the ${ }^{2} \Pi$ and ${ }^{2} \Sigma^{+}$states correspond to the $\lambda=1$ and $\lambda=0$ projections of an isolated $\ell=1$ atomic orbital. In this case $\left.\left.\left\langle{ }^{2} \Pi\right| B \mathbf{L}_{+}\right|^{2} \Sigma^{+}\right\rangle=$ $\left.B[1 \cdot 2-0 \cdot 1]^{1 / 2}=2^{1 / 2} B . B_{\Pi}=B_{\Sigma}=B,\left.\left\langle{ }^{2} \Pi\right| A \mathbf{L}_{+}\right|^{2} \Sigma^{+}\right\rangle=2^{1 / 2} A, A_{\Pi}=A$. Write the case (c) matrix and find the eigenvalues for $E_{\Pi}=E_{\Sigma}=E$. What is the pattern forming rotational quantum number when $A \gg B J$? For each J-value you should find two near degenerate pairs of e, f levels above one e, f pair. What is the splitting of these two groups of molecular levels? How does this compare to the level pattern (degeneracies and splitting) for a ${ }^{2} P$ atomic state?
(d) Consider the case (d) limit for a " p-complex". Use the same definitions of $E_{\Pi}, E_{\Sigma}, B_{\Pi}, B_{\Sigma}, A_{\Pi}, \alpha, \beta$ as for case (c) but set $A=0$. Your transformed case (b) matrix will be helpful here. Show that R is the pattern forming quantum number by finding the relation between R and J for each of the six same- $J, e / f$ eigenvalues.
2. Effective Hamiltonian Matrices.
(a) Set up the Hamiltonian,

$$
\mathbf{H}=\mathbf{H}^{\mathrm{ROT}}+\mathbf{H}^{\text {SPIN-ORBIT }}
$$

for the 9 basis functions:

$$
\begin{array}{rllrrl}
& \Lambda & \mathrm{S} & \Sigma & \Omega & \\
{ }^{3} \Pi & 1 & 1 & 1 & 2 & \left|{ }^{3} \Pi_{2}\right\rangle\left|v_{\Pi}\right\rangle \\
& -1 & 1 & -1 & -2 & \left.\left.\right|^{3} \Pi_{-2}\right\rangle\left|v_{\Pi}\right\rangle \\
& 1 & 1 & 0 & 1 & \left|{ }^{3} \Pi_{1}\right\rangle\left|v_{\Pi}\right\rangle \\
& -1 & 1 & 0 & -1 & \left.\left.\right|^{3} \Pi_{-1}\right\rangle\left|v_{\Pi}\right\rangle \\
& 1 & 1 & -1 & +0 & \left|{ }^{3} \Pi_{0}\right\rangle\left|v_{\Pi}\right\rangle \\
& -1 & 1 & 1 & -0 & \left|{ }^{3} \Pi_{-0}\right\rangle\left|v_{\Pi}\right\rangle \\
{ }^{3} \Sigma^{+} & 0 & 1 & 1 & 1 & \left|{ }^{3} \Sigma_{1}^{+}\right\rangle\left|v_{\Sigma}\right\rangle \\
& 0 & 1 & 0 & 0 & \left|{ }^{3} \Sigma_{0}^{+}\right\rangle\left|v_{\Sigma}\right\rangle \\
& 0 & 1 & -1 & -1 & \left|{ }^{3} \Sigma_{-1}^{+}\right\rangle\left|v_{\Sigma}\right\rangle .
\end{array}
$$

Let

$$
\begin{aligned}
\alpha & \equiv\left\langle\Lambda=1\left\|A \mathbf{L}_{+}\right\| \Lambda=0\right\rangle \\
\beta & \equiv\left\langle\Lambda=1\left\|\mathbf{L}_{+}\right\| \Lambda=0\right\rangle
\end{aligned}
$$

and use

$$
\langle 1| \mathbf{H}|2\rangle=(-1)^{2 J+S_{1}+S_{2}+\sigma_{1}+\sigma_{2}}\langle-1| \mathbf{H}|-2\rangle
$$

where $\sigma=1$ for Σ^{-}states and 0 for all other states, to ensure phase consistency for

$$
\langle\Lambda=1| \mathbf{H}|\Lambda=0\rangle \text { and }\langle\Lambda=-1| \mathbf{H}|\Lambda=0\rangle
$$

matrix elements.
(b) Construct the e / f parity basis using the following phase definitions
$\sigma_{v}\left|v, n \Lambda^{\sigma} S \Sigma, \Omega J M\right\rangle=(-1)^{J-2 \Sigma+S+\sigma}\left|v, n-\Lambda^{\sigma} S-\Sigma,-\Omega J M\right\rangle$
e-levels $\quad \sigma_{\nu} \psi=+(-1)^{J} \psi$
f-levels $\quad \sigma_{v} \psi=-(-1)^{J} \psi$.
(c) Factor the 9×9 Hamiltonian into a 5×5 and a 4×4 matrix using the e / f basis functions.
(d) Obtain the centrifugal distortion correction terms for the $\left\langle{ }^{3} \Pi_{0}\right| \mathbf{H}\left|{ }^{3} \Pi_{0}\right\rangle_{e},\left\langle{ }^{3} \Pi_{1} \mid \mathbf{H}{ }^{3} \Pi_{1}\right\rangle_{e}$, and $\left.\left.\left\langle{ }^{3} \Pi_{1}\right| \mathbf{H}\right|^{3} \Pi_{0}\right\rangle_{e}$ matrix elements.

$$
D_{\Pi} \equiv-\sum_{v_{\Pi^{\prime}}} \frac{\left\langle v_{\Pi}\right| B\left|v_{\Pi}^{\prime}\right\rangle^{2}}{E_{\Pi_{v}}^{0}-E_{\Pi_{v^{\prime}}}^{0}}
$$

(e) Obtain the correction terms for the effect of remote ${ }^{3} \Sigma^{+}$levels on ${ }^{3} \Pi$ for the $\left.\left.\left\langle{ }^{3} \Pi_{0}\right| \mathbf{H}\right|^{3} \Pi_{0}\right\rangle_{e}$ and f and $\left.\left.\left\langle{ }^{3} \Pi_{1}\right| \mathbf{H}\right|^{3} \Pi_{1}\right\rangle_{e \text { and } f}$ matrix elements.

$$
\begin{aligned}
& o \equiv \sum_{v^{\prime} \Sigma} \frac{\left[\frac{1}{2} \alpha\left\langle v_{\Pi} \mid v_{\Sigma}^{\prime}\right\rangle\right]^{2}}{E_{\Pi v}^{0}-E_{\Sigma v^{\prime}}^{0}} \\
& p \equiv 4 \sum_{v^{\prime} \Sigma} \frac{\left[\frac{1}{2} \alpha \beta\left\langle v_{\Pi} \mid v_{\Sigma}^{\prime}\right\rangle\left\langle v_{\Pi}\right| B\left|v_{\Sigma}^{\prime}\right\rangle\right]}{E_{\Pi v}^{0}-E_{\Sigma v^{\prime}}^{0}} \\
& q \equiv 2 \sum_{v^{\prime} \Sigma} \frac{\left[\beta\left\langle v_{\Pi}\right| B\left|v_{\Sigma}^{\prime}\right\rangle\right]^{2}}{E_{\Pi v}^{0}-E_{\Sigma v^{\prime}}^{0}}
\end{aligned}
$$

Express diagonal contributions to the Λ-doubling of the $\Omega=0$ and $1^{3} \Pi$ substates in terms of o, p, and q.

