5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1985

Problem Set #3

1 Hund's Coupling Cases.

- (a) Write the case (a) *e* and *f*-symmetry 3×3 effective Hamiltonian matrices for the ${}^{2}\Pi$, ${}^{2}\Sigma^{+}$ problem we have considered in Lecture. Include only the zeroth and first order matrix elements of **H**^{ROT} and **H**^{SO}. Show that the effective rotational constants for ${}^{2}\Pi_{3/2}$ and ${}^{2}\Pi_{1/2}$ are $B \pm B^{2}/A$ near the case (a) limit.
- (b) Consider the case (b) limit where $A \ll BJ$. Form the approximate case (b) eigenfunctions for ${}^{2}\Pi$ as

$$\psi_{\pm} = 2^{-1/2} \left[\left|^{2} \Pi_{1/2} \right\rangle \pm \left|^{2} \Pi_{3/2} \right\rangle \right]$$

and re-express the full 3×3 matrix in this basis.

- (i) You will find that both of the ² Π eigenstates follow a BN(N + 1) rotational energy level expression. Which group of states E_+ , ψ_+ or E_- , ψ_- corresponds to N = J + 1/2 and which to N = J - 1/2?
- (ii) What is the ΔN selection rule for spin-orbit ${}^{2}\Pi \sim {}^{2}\Sigma^{+}$ perturbations?
- (iii) What is the ΔN selection rule for BJ·L $^{2}\Pi \sim^{2} \Sigma^{+}$ perturbations?
- (c) Consider the case (c) limit for a "*p*-complex". This means that the ²Π and ²Σ⁺ states correspond to the $\lambda = 1$ and $\lambda = 0$ projections of an isolated $\ell = 1$ atomic orbital. In this case $\langle {}^{2}\Pi | B\mathbf{L}_{+} | {}^{2}\Sigma^{+} \rangle =$ $B[1 \cdot 2 - 0 \cdot 1]^{1/2} = 2^{1/2}B$. $B_{\Pi} = B_{\Sigma} = B$, $\langle {}^{2}\Pi | A\mathbf{L}_{+} | {}^{2}\Sigma^{+} \rangle = 2^{1/2}A$, $A_{\Pi} = A$. Write the case (c) matrix and find the eigenvalues for $E_{\Pi} = E_{\Sigma} = E$. What is the pattern forming rotational quantum number when $A \gg BJ$? For each J-value you should find two near degenerate pairs of *e*, *f* levels above one *e*, *f* pair. What is the splitting of these two groups of molecular levels? How does this compare to the level pattern (degeneracies and splitting) for a ²P atomic state?
- (d) Consider the case (d) limit for a "*p*-complex". Use the same definitions of E_{Π} , E_{Σ} , B_{Π} , B_{Σ} , A_{Π} , α , β as for case (c) but set A = 0. Your transformed case (b) matrix will be helpful here. Show that *R* is the pattern forming quantum number by finding the relation between *R* and *J* for each of the six same-*J*, e/f eigenvalues.

2. Effective Hamiltonian Matrices.

(a) Set up the Hamiltonian,

 $\mathbf{H} = \mathbf{H}^{\text{ROT}} + \mathbf{H}^{\text{SPIN-ORBIT}}$

for the 9 basis functions:

	Λ	S	Σ	Ω	
$^{3}\Pi$	1	1	1	2	$ ^{3}\Pi_{2}\rangle v_{\Pi}\rangle$
	-1	1	-1	-2	$ ^{3}\Pi_{-2}\rangle v_{\Pi}\rangle$
	1	1	0	1	$ ^{3}\Pi_{1}\rangle v_{\Pi}\rangle$
	-1	1	0	-1	$ ^{3}\Pi_{-1}\rangle v_{\Pi}\rangle$
	1	1	-1	+0	$ ^{3}\Pi_{0}\rangle v_{\Pi}\rangle$
	-1	1	1	-0	$ ^{3}\Pi_{-0}\rangle v_{\Pi}\rangle$
$^{3}\Sigma^{+}$	0	1	1	1	$ ^{3}\Sigma_{1}^{+}\rangle v_{\Sigma}\rangle$
	0	1	0	0	$\left ^{3}\Sigma_{0}^{+}\right\rangle\left v_{\Sigma}\right\rangle$
	0	1	-1	-1	$\left {}^{3}\Sigma_{-1}^{+} \right\rangle \left v_{\Sigma} \right\rangle$.

Let

$$\begin{split} \alpha &\equiv \langle \Lambda = 1 \| A \mathbf{L}_{+} \| \Lambda = 0 \rangle \\ \beta &\equiv \langle \Lambda = 1 \| \mathbf{L}_{+} \| \Lambda = 0 \rangle \end{split}$$

and use

$$\langle 1|\mathbf{H}|2\rangle = (-1)^{2J+S_1+S_2+\sigma_1+\sigma_2} \langle -1|\mathbf{H}|-2\rangle$$

where $\sigma = 1$ for Σ^{-} states and 0 for all other states, to ensure phase consistency for

 $\langle \Lambda = 1 | \mathbf{H} | \Lambda = 0 \rangle$ and $\langle \Lambda = -1 | \mathbf{H} | \Lambda = 0 \rangle$

matrix elements.

(b) Construct the e/f parity basis using the following phase definitions

$$\sigma_{v} | v, n \Lambda^{\sigma} S \Sigma, \Omega J M \rangle = (-1)^{J - 2\Sigma + S + \sigma} | v, n - \Lambda^{\sigma} S - \Sigma, -\Omega J M \rangle$$

e-levels
$$\sigma_{v} \psi = + (-1)^{J} \psi$$

f-levels $\sigma_v \psi = -(-1)^J \psi$.

- (c) Factor the 9×9 Hamiltonian into a 5×5 and a 4×4 matrix using the e/f basis functions.
- (d) Obtain the centrifugal distortion correction terms for the $\langle {}^{3}\Pi_{0}|\mathbf{H}|{}^{3}\Pi_{0}\rangle_{e}$, $\langle {}^{3}\Pi_{1}|\mathbf{H}|{}^{3}\Pi_{1}\rangle_{e}$, and $\langle {}^{3}\Pi_{1}|\mathbf{H}|{}^{3}\Pi_{0}\rangle_{e}$ matrix elements.

$$D_{\Pi} \equiv -\sum_{\nu_{\Pi'}} \frac{\left\langle \nu_{\Pi} | B | \nu'_{\Pi} \right\rangle^2}{E^0_{\Pi_{\nu}} - E^0_{\Pi_{\nu'}}}.$$

(e) Obtain the correction terms for the effect of remote ${}^{3}\Sigma^{+}$ levels on ${}^{3}\Pi$ for the $\langle {}^{3}\Pi_{0}|\mathbf{H}|{}^{3}\Pi_{0}\rangle_{e \text{ and } f}$ and $\langle {}^{3}\Pi_{1}|\mathbf{H}|{}^{3}\Pi_{1}\rangle_{e \text{ and } f}$ matrix elements.

$$\begin{split} o &\equiv \sum_{\nu'\Sigma} \frac{\left[\frac{1}{2}\alpha \left\langle v_{\Pi} | v'_{\Sigma} \right\rangle\right]^{2}}{E_{\Pi\nu}^{0} - E_{\Sigma\nu'}^{0}} \\ p &\equiv 4 \sum_{\nu'\Sigma} \frac{\left[\frac{1}{2}\alpha\beta \left\langle v_{\Pi} | v'_{\Sigma} \right\rangle \left\langle v_{\Pi} | B | v'_{\Sigma} \right\rangle\right]}{E_{\Pi\nu}^{0} - E_{\Sigma\nu'}^{0}} \\ q &\equiv 2 \sum_{\nu'\Sigma} \frac{\left[\beta \left\langle v_{\Pi} | B | v'_{\Sigma} \right\rangle\right]^{2}}{E_{\Pi\nu}^{0} - E_{\Sigma\nu'}^{0}} \end{split}$$

Express diagonal contributions to the Λ -doubling of the $\Omega = 0$ and $1^{3}\Pi$ substates in terms of *o*, *p*, and *q*.