5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1976

Problem Set #2

- 1. (a) Construct the state $|L = 2, S = 1, J = 1, M_J = 0\rangle$ from the $|LM_L S M_S\rangle$ basis using the ladder operator plus orthogonality technique.
 - (b) Construct the states

$$\begin{split} |L &= 2, S = 1, J = 1, M_J = 0 \rangle \quad {}^{3}D_1 \\ |L &= 2, S = 2, J = 1, M_J = 0 \rangle \quad {}^{5}D_1 \\ |L &= 5, S = 2, J = 3, M_J = 1 \rangle \quad {}^{5}H_3 \end{split}$$

from the $|L M_L S M_S\rangle$ basis using Clebsch-Grodan coefficients. The 3D_1 function is the same as in Part (a) and is intended as a consistency check.

- 2. We know that the spin-orbit Hamiltonian, $\mathbf{H}^{SO} = AL \cdot S$, is diagonal in the $|LS J M_J\rangle$ basis but not in the $|LM_LS M_S\rangle$ basis.
 - (a) Construct the full nine by nine \mathbf{H}^{SO} matrix in the $|L = 1 M_L S = 1 M_S \rangle$ basis.
 - (b) Construct the

 $|L = 1, S = 1, J = 2, M_J = 0\rangle \quad {}^{3}P_2$ $|L = 1, S = 1, J = 1, M_J = 0\rangle \quad {}^{3}P_1$ and $|L = 1, S = 1, J = 0, M_J = 0\rangle \quad {}^{3}P_0$ functions in the $|L M_L S M_S\rangle$ basis.

(c) Show that the matrix elements

$$\begin{split} &\left\langle L = 1, S = 1, J = 2, M_J = 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 2, 0 \right\rangle \\ &\left\langle 1, 1, 2, 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 1, 0 \right\rangle \\ &\left\langle 1, 1, 2, 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 0, 0 \right\rangle \\ &\left\langle 1, 1, 1, 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 1, 0 \right\rangle \\ &\left\langle 1, 1, 1, 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 0, 0 \right\rangle \\ &\left\langle 1, 1, 0, 0 \left| \mathbf{H}^{\text{SO}} \right| 1, 1, 0, 0 \right\rangle \end{split}$$

expressed in terms of the $|L M_L S M_S\rangle$ basis in part (b) have the values expected from $L \cdot S = 1/2 (\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2)$ evaluated in the $|L S J M_J\rangle$ basis.

3. Calculate the energies for the hydrogenic systems **H** and Li^{2+} in the following states:

 $2 {}^{2}P_{1/2}$ (means n = 2, s = 1/2, $\ell = 1$, j = 1/2) $2 {}^{2}P_{3/2}$ $3 {}^{2}P_{1/2}$ $3 {}^{2}P_{3/2}$ $3 {}^{2}D_{3/2}$ $3 {}^{2}D_{5/2}$

Please express "energies" in cm⁻¹: $\sigma = \frac{E}{he}$ cm⁻¹ and locate the zero of energy at $n = \infty$.

- 4. Consider the $(nd)^2$ configuration.
 - (a) There are 10 distinct spin-orbitals associated with *nd*; how many Pauli-allowed $(nd)^2$ Slater determinants can you form using two of these spin-orbitals?
 - (b) What are the L S states associated with the $(nd)^2$ configuration? Does the sum of their degeneracies agree with the configurational degeneracy in part (a)?
 - (c) What is the lowest energy triplet state (S = 1) predicted by Hund's rules? Does Hund's rule predict the lowest energy singlet state?
 - (d) Calculate the energies of all states (neglecting spin-orbit splitting) which arise from (nd)² in terms of the radial energy parameters F⁰, F², and F⁴. [This is a long and difficult problem. The similar (np)² problem is worked out in detail in Condon and Shortley, pages 191-193, and in Tinkham, pages 177-178. The result for (nd)² is also given, without explanation and in slightly different notation, Condon and Shortley, page 202.] What relationship between F² and F⁴ is required by Hund's rules?
- 5. If an atom is in a $(2p)^2 {}^3P_0$ state, to which of the following states is an electric dipole transition allowed? Explain in each case.
 - (a) $2p3d^{3}D_{2}$
 - (b) $2s2p {}^{3}P_{1}$
 - (c) $2s3s^{3}S_{1}$
 - (d) $2s2p \ ^1P_1$