MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Chemistry 5.76
Spring 1976

Problem Set \#2

1. (a) Construct the state $\left|L=2, S=1, J=1, M_{J}=0\right\rangle$ from the $\left|L M_{L} S M_{S}\right\rangle$ basis using the ladder operator plus orthogonality technique.
(b) Construct the states

$$
\begin{array}{lll}
\left|L=2, S=1, J=1, M_{J}=0\right\rangle & { }^{3} D_{1} \\
\left|L=2, S=2, J=1, M_{J}=0\right\rangle & { }^{5} D_{1} \\
\left|L=5, S=2, J=3, M_{J}=1\right\rangle & { }^{5} H_{3}
\end{array}
$$

from the $\left|L M_{L} S M_{S}\right\rangle$ basis using Clebsch-Grodan coefficients. The ${ }^{3} D_{1}$ function is the same as in Part (a) and is intended as a consistency check.
2. We know that the spin-orbit Hamiltonian, $\mathbf{H}^{\mathrm{SO}}=A L \cdot S$, is diagonal in the $\left|L S J M_{J}\right\rangle$ basis but not in the $\left|L M_{L} S M_{S}\right\rangle$ basis.
(a) Construct the full nine by nine \mathbf{H}^{SO} matrix in the $\left|L=1 M_{L} S=1 M_{S}\right\rangle$ basis.
(b) Construct the

$$
\begin{array}{rll}
\mid L & \left|L=1, S=1, J=2, M_{J}=0\right\rangle & { }^{3} P_{2} \\
& \left|L=1, S=1, J=1, M_{J}=0\right\rangle & { }^{3} P_{1} \\
\text { and } \quad \mid L & \left|L, S=1, J=0, M_{J}=0\right\rangle & { }^{3} P_{0}
\end{array}
$$

functions in the $\left|L M_{L} S M_{S}\right\rangle$ basis.
(c) Show that the matrix elements
$\left\langle L=1, S=1, J=2, M_{J}=0\right| \mathbf{H}^{\mathrm{SO}}|1,1,2,0\rangle$
$\langle 1,1,2,0| \mathbf{H}^{\mathrm{SO}}|1,1,1,0\rangle$
$\langle 1,1,2,0| \mathbf{H}^{\mathrm{SO}}|1,1,0,0\rangle$
$\langle 1,1,1,0| \mathbf{H}^{\mathrm{SO}}|1,1,1,0\rangle$
$\langle 1,1,1,0| \mathbf{H}^{\mathrm{SO}}|1,1,0,0\rangle$
$\langle 1,1,0,0| \mathbf{H}^{\mathrm{SO}}|1,1,0,0\rangle$
expressed in terms of the $\left|L M_{L} S M_{S}\right\rangle$ basis in part (b) have the values expected from $L \cdot S=1 / 2\left(\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}\right)$ evaluated in the $\left|L S J M_{J}\right\rangle$ basis.
3. Calculate the energies for the hydrogenic systems \mathbf{H} and Li^{2+} in the following states:
$2{ }^{2} P_{1 / 2}$ (means $n=2, s=1 / 2, \ell=1, j=1 / 2$)
$2^{2} P_{3 / 2}$
$3{ }^{2} P_{1 / 2}$
$3{ }^{2} P_{3 / 2}$
$3^{2} D_{3 / 2}$
$3{ }^{2} D_{5 / 2}$
Please express "energies" in $\mathrm{cm}^{-1}: \sigma=\frac{E}{h e} \mathrm{~cm}^{-1}$ and locate the zero of energy at $n=\infty$.
4. Consider the $(n d)^{2}$ configuration.
(a) There are 10 distinct spin-orbitals associated with $n d$; how many Pauli-allowed ($n d)^{2}$ Slater determinants can you form using two of these spin-orbitals?
(b) What are the $L-S$ states associated with the ($n d)^{2}$ configuration? Does the sum of their degeneracies agree with the configurational degeneracy in part (a)?
(c) What is the lowest energy triplet state $(S=1)$ predicted by Hund's rules? Does Hund's rule predict the lowest energy singlet state?
(d) Calculate the energies of all states (neglecting spin-orbit splitting) which arise from ($n d)^{2}$ in terms of the radial energy parameters $\mathrm{F}^{0}, \mathrm{~F}^{2}$, and F^{4}. [This is a long and difficult problem. The similar $(n p)^{2}$ problem is worked out in detail in Condon and Shortley, pages 191-193, and in Tinkham, pages 177-178. The result for $(n d)^{2}$ is also given, without explanation and in slightly different notation, Condon and Shortley, page 202.] What relationship between F^{2} and F^{4} is required by Hund's rules?
5. If an atom is in a $(2 p)^{2}{ }^{3} P_{0}$ state, to which of the following states is an electric dipole transition allowed? Explain in each case.
(a) $2 p 3 d^{3} D_{2}$
(b) $2 s 2 p^{3} P_{1}$
(c) $2 s 3 s^{3} S_{1}$
(d) $2 s 2 p{ }^{1} P_{1}$

