MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Chemistry 5.76
Spring 1994

Problem Set \#1 ANSWERS

1. (a) Make the necessary conversions in order to fill in the table:

Wavelength (\AA)	420			
Wavenumber $\left(\mathrm{cm}^{-1}\right)$		100		
Energy (J)				
Energy (kJ/mole)			490	
Frequency (Hz)			8.21×10^{13}	

Answer:

$$
\begin{aligned}
\tilde{v} & =\frac{1}{\lambda}=\frac{1}{\lambda[\AA] \cdot 10^{-10} m \AA^{-1}} \cdot \frac{10^{-2} m}{1 \mathrm{~cm}}=\frac{10^{8} \mathrm{~cm}^{-1}}{\lambda[\AA]} \\
E & =\frac{h c}{\lambda}=\frac{6.626 \cdot 10^{-34} \mathrm{Js} \cdot 2.998 \cdot 10^{8} \mathrm{~ms}^{-1}}{\lambda\left[\AA \AA \cdot 10^{-10} m \AA^{-1}\right.} \\
& =\frac{1.988 \cdot 10^{-15} \mathrm{~J}}{\lambda[\AA]} \\
E & =\frac{1.988 \cdot 10^{-15} \mathrm{~J} / \text { photon }}{\lambda[\AA \mathrm{A}]} \cdot 6.022 \cdot 10^{23} \text { photon } / \text { mole } \cdot 10^{-3} \mathrm{~kJ} / \mathrm{J} \\
& =\frac{1.197 \cdot 10^{6} \mathrm{~kJ} / \text { mole }}{\lambda[\AA]} \\
v & =\frac{c}{\lambda} ; \quad v \text { is not angular frequency, but the reciprocal of the period of oscillation } \\
& =\frac{2.998 \cdot 10^{8} m s^{-1}}{\lambda[\AA] \cdot 10^{-10} m \AA^{-1}}=\frac{2.998 \cdot 10^{18} \mathrm{~Hz}}{\lambda[\AA]}
\end{aligned}
$$

(b) Name the spectral region associated with each of the last four columns of the table.

Answer: Name for region of the spectrum	XUV	Far IR	UV	Mid IR
wavelength/A	420	$1.00 \cdot 10^{6}$	2440	$3.65 \cdot 10^{4}$
wavenumber/cm ${ }^{-1}$	$2.38 \cdot 10^{5}$	100	40900	2740
energy $/ \mathrm{J}$	$4.73 \cdot 10^{-18}$	$1.99 \cdot 10^{-21}$	$8.14 \cdot 10^{-19}$	$5.44 \cdot 10^{-20}$
energy $/ \mathrm{kJ} \mathrm{mole}$				
frequency $/ \mathrm{Hg}$	2850	1.20	490	32.8

2. A $100-\mathrm{W}$ tungsten filament lamp operates at 2000 K . Assuming that the filament emits like a blackbody, what is the total power emitted between $6000 \AA$ and $6001 \AA$? How many photons per second are emitted in this wavelength interval?

Answer: This problem makes use of the Stefan-Boltzman Law, $I=\sigma T^{4}$. You can either derive it (problem 8a) or look it up.
100 W tungsten filament lamp operating at 2000 K .
What is the total power emitted between $6000 \AA$ and $6001 \AA$?
We can calculate this quantity by integrating the Planck function from $6000 \AA$ to $6001 \AA$, and comparing that the value of the Planck function integrated over all λ 's.

$$
\text { Power }=\frac{\int_{v_{1}}^{v_{2}} \rho(v, T) d v}{\int_{0}^{\infty} \rho(v, T) d v} \times 100 W ; v_{1}=\frac{c}{6001 \AA}, v_{2}=\frac{c}{6000 \AA} .
$$

$\rho(v, T)$ is approximately constant between $6000 \AA$ and $6001 \AA$.
$d v=-\frac{c}{\lambda^{2}} d \lambda, d v \simeq \frac{c}{\lambda^{2}}|\Delta \lambda|$
$\int_{v_{1}}^{v_{2}} \rho(v, T) d v \simeq \bar{\rho} \Delta v$
$\bar{\rho} \simeq \frac{8 \pi h}{c^{3}} \bar{v}^{3} e^{-\frac{h \bar{v}}{k t}}, h \bar{v} \gg k T$
$\int_{0}^{\infty} \rho(v, T)=\frac{8 \pi h}{c^{3}} \int_{0}^{\infty} \frac{v^{3}}{e^{\frac{k T}{T}}-1} d v$
let $x=\frac{h v}{k T}, d v=\frac{h}{k T} d v$

$$
\begin{aligned}
& \int_{0}^{\infty} \rho(v, T) d v=\frac{8 \pi h}{c^{3}}\left(\frac{k T}{h}\right)^{4} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x \\
&=\frac{8 \pi h}{c^{3}}\left(\frac{\pi^{4}}{15}\right)\left(\frac{k T}{h}\right)^{4} \text { Stefan-Boltzman Law } \\
& \frac{\bar{\rho} \Delta v}{\int_{0}^{\infty} \rho(v) d v}=\frac{\bar{v}^{3} e^{-\frac{k \bar{v}}{k T}} \Delta v}{\frac{\pi^{4}}{15}\left(\frac{k T}{h}\right)^{4}}=\frac{\left(4.996 \times 10^{14} s^{-1}\right)^{3}\left(1.611 \times 10^{5}\right)^{-1}\left(8.326 \times 10^{+10} s^{-1}\right)}{(6.494)\left(4.168 \times 10^{13} s^{-1}\right)^{4}} \\
&=3.29 \times 10^{-6} \\
& \begin{aligned}
3.29 \times 10^{-6} \times 100 W & =329 \mu W \\
& =\frac{3.29 \times 10^{-6} \mathrm{Js}^{-1}}{3.313 \times 10^{-19} \mathrm{Jphoto}^{-1}} \\
& =9.93 \times 10^{12} \mathrm{photons} \mathrm{~s}^{-1}
\end{aligned}
\end{aligned}
$$

3. (a) What is the magnitude of the electric field for the beam of a $1-\mathrm{mW}$ helium-neon laser with a diameter of 1 mm ?
Answer: Use Bernath (1.4b) $E=27.4 I^{1 / 2}=988 \mathrm{~V} / \mathrm{m}$
(b) How many photons per second are emitted at $6328 \AA$?

Answer:

$$
\begin{aligned}
1 \mathrm{~mW} & =1 \times 10^{-3} \mathrm{Js}^{-1} @ 6328 \AA \\
& =1 \times 10^{-3} J s^{-1} /\left[\frac{1.988 \times 10^{-15} \mathrm{~J} \text { photon }^{-1}}{6328}\right] \\
& =3.18 \times 10^{15} \text { photons s }{ }^{-1}
\end{aligned}
$$

(c) If the laser linewidth is 1 kHz , what temperature would a blackbody have to be to emit the same number of photons from a equal area over the same frequency interval as the laser?
Answer: The HeNe beam has $d=1 \mathrm{~mm}, A=\left(\frac{\pi}{4}\right) \mathrm{mm}^{2}=0.785 \mathrm{~mm}^{2}$. For calculation of $T_{b b}$, $A=A_{\mathrm{HeNe}}=0.785 \mathrm{~mm}^{2}$.
$A \int I(v, T) d v \simeq A \rho(6328 \AA, T) \frac{c}{4} \Delta v=1 m W$
$\rho(6328 \AA, T)=\frac{8 \pi h}{\lambda^{3}}\left[e^{\frac{h v}{k T} \frac{1}{\lambda}}-1\right]^{-1}$
$A \rho(\lambda, T) \frac{c}{4} \Delta v=P$
$\frac{A}{P} \frac{8 \pi h}{h^{3}} \frac{c}{4} \Delta v=e^{\frac{h \nu}{k h} \frac{1}{T}}-1$
$\frac{0.785 \times 10^{-6} m^{2}}{1 \times 10^{-3} J s^{-1}} \times \frac{(8 \pi) 6.626 \times 10^{-34} J s}{\left(6.328 \times 10^{-7} m\right)^{3}} \times \frac{3.000 \times 10^{8} m s^{-1}}{4} \times 10^{3} s^{-1}=\frac{A}{P} \frac{8 \pi}{\lambda^{3}} \frac{h c}{4}$
$=396$
$e^{x} \simeq 1+x, x \ll 1$
$\frac{h c}{h \lambda} \frac{1}{T} \simeq 3.86 \times 10^{-6}$

$$
\begin{aligned}
T & =\frac{6.626 \times 10^{-34} \mathrm{Js} \times 3.00 \times 10^{8} \mathrm{~ms}^{-1}}{1.381 \times 10^{-23} J K^{-1} \times 6.328 \times 10^{-7} m} \times \frac{1}{3.86 \times 10^{-6}} \\
& =5.89 \times 10^{9} \mathrm{~K}
\end{aligned}
$$

4. The lifetime of the $3^{2} \mathrm{P}_{3 / 2} \rightarrow 3^{2} \mathrm{~S}_{1 / 2}$ transition of the Na atom at $5890 \AA$ is measured to be 16 ns . $\mathrm{Na} 3^{2} \mathrm{P}_{3 / 2} \leftarrow 3^{2} \mathrm{~S}_{1 / 2} \quad \lambda=5890 \AA, \tau=16 \mathrm{~ns}$
(a) What are the Einstein A and B coefficients for the transition?

Answer: The radiative lifetime of the state is related to the Einstein spontaneous emission coefficients

$$
\tau_{i}^{-1}=\sum_{j} A_{i j}
$$

The $3^{2} \mathrm{P}_{3 / 2}$ state can radiate only to $3^{2} \mathrm{~S}_{1 / 2}$ (the ground state), so

$$
A=\frac{1}{\tau}=\frac{1}{16 n s}=6.3 \times 10^{7} s^{-1}
$$

From Eq. (1.22)

$$
\begin{aligned}
B & =\frac{\lambda^{3} A}{8 \pi h}=\frac{\left(5.890 \times 10^{-7} \mathrm{~m}\right)^{3}}{8 \pi 6.626 \times 10^{-34} J s\left(16 \times 10^{-9} s\right)} \\
& =7.67 \times 10^{20} J^{-1} \mathrm{~m}^{3} s^{-2}
\end{aligned}
$$

(b) What is the transition dipole moment in debye?

Answer: from Eq. (1.52)

$$
\begin{aligned}
A_{10} & =\frac{16 \pi^{3} v^{3}}{3 \epsilon_{0} h c^{3}} \mu_{10}^{2}=3.136 \times 10^{-7} \tilde{v}^{3} \mu_{10}^{2} \quad \tilde{v}=\left[\mathrm{cm}^{-1}\right] \\
\mu_{10}^{2} & =\frac{1}{16 \times 10^{-4}} \frac{1}{3.136 \times 10^{-7}}\left(\frac{5890 \AA}{10^{8} \AA \mathrm{~cm}^{-1}}\right)^{-3}=40.7 D^{2} \\
\left|\mu_{10}\right| & =6.38 \mathrm{D}
\end{aligned}
$$

(c) What is the peak absorption cross section for the transition in \AA^{2}, assuming that the linewidth is determined by lifetime broadening?
Answer: Lorentzian line profile is due to only lifetime broadening

$$
\begin{aligned}
& g\left(v-v_{0}\right) \\
& g(0)=\frac{4}{\gamma} ; \gamma=\frac{1}{\tau_{s p}} \\
& g(0)=4 \tau_{s p}
\end{aligned}
$$

Answer: 4c, continued

From Eq. (1.57)

$$
\begin{aligned}
\sigma & =\frac{A \lambda^{2} g\left(v-v_{10}\right)}{8 \pi}=\frac{\lambda^{2} g\left(v-v_{10}\right)}{8 \pi \tau_{s p}} ; A=\frac{1}{\tau_{s p}} \\
\sigma_{\max } & =\frac{\lambda^{2} 4 \tau_{s p}}{8 \pi \tau_{s p}}=\frac{\lambda^{2}}{2 \pi} ; v=v_{0} \\
& =\frac{\left(5.890 \times 10^{-5} \mathrm{~cm}\right)^{2}}{2 \pi}=5.52 \times 10^{-10} \mathrm{~cm}^{2}
\end{aligned}
$$

5. (a) For Na atoms in a flame at 2000 K and 760 Torr pressure calculate the peak absorption cross section (at line center) for the $3^{2} \mathrm{P}_{3 / 2}-3^{2} \mathrm{~S}_{1 / 2}$ transition at $5890 \AA$. Use $30 \mathrm{MHz} /$ Torr as the pressure-broadening coefficient and the data in Problem 4.
Answer: Na atoms, $T=2000 \mathrm{~K}, p=760$ torr.
Calculate peak absorption cross-section for $3^{2} \mathrm{P}_{3 / 2}-3^{2} \mathrm{~S}_{1 / 2} 5890 \AA$.

$$
\begin{aligned}
\Delta v_{1 / 2} & =(30 \mathrm{MHz} / \text { torr }) p \\
& =\frac{30 \mathrm{MHz}}{\text { torr }}(760 \text { torr })\left(29979 \mathrm{MHz} / \mathrm{cm}^{-1}\right)^{-1} \\
& =0.76 \mathrm{~cm}^{-1}
\end{aligned}
$$

From Eq. (1.75), for a Lorentzian lineshape

$$
\Delta v_{1 / 2}=\frac{\gamma}{2 \pi} \quad ; \quad \gamma=2 \pi \Delta v_{1 / 2}
$$

From Eq. (1.57),

$$
\begin{aligned}
\sigma_{\max } & =\frac{A \lambda^{2} g(0)}{8 \pi}=\frac{A \lambda^{2}}{2 \pi \gamma}, \quad g(0)=\frac{4}{\gamma} \\
& =\frac{A \lambda^{2}}{(2 \pi)^{2} \Delta v_{1 / 2}}=\frac{1}{16 \times 10^{-9} s} \frac{\left(5.890 \times 10^{-5} \mathrm{~cm}\right)^{2}}{(2 \pi)^{2}\left(22900 \times 10^{6} s^{-1}\right)} \\
& =2.41 \times 10^{-13} \mathrm{~cm}^{2}
\end{aligned}
$$

(b) If the path length in the flame is 10 cm , what concentration of Na atoms will produce an absorption $\left(I / I_{0}\right)$ of $1 / e$ at line center?
Answer: $N_{1} \approx 0, N_{0} \approx N \quad \frac{N}{N_{0}}=\frac{4}{2} e^{-\frac{16978}{1370}}=1.0 \times 10^{-5}$

$$
\begin{aligned}
\ln \left(\frac{I}{I_{0}}\right) & =-\sigma N \ell=-1 \\
N & =\left[2.41 \times 10^{-13} \mathrm{~cm}^{2} \times 10 \mathrm{~cm}\right]^{-1}=4.15 \times 10^{11} \mathrm{~cm}^{-3}
\end{aligned}
$$

(c) Is the transition primarily Doppler or pressure broadened?

Answer:

$$
\begin{aligned}
\Delta \tilde{v}_{0} & =7.1 \times 10^{-7} \tilde{v}_{0}\left(\frac{T}{M}\right)^{1 / 2} \\
\tilde{v}_{0} & =16978 \mathrm{~cm}^{-1} \\
T & =2000 \mathrm{~K} \\
M & =23 \mathrm{amu} \\
\Delta \tilde{v}_{0} & =0.11 \mathrm{~cm}^{-1}
\end{aligned}
$$

This compares to the pressure broadened linewidth of $0.76 \mathrm{~cm}^{-1}$, as determined in part (a). The transition is primarily pressure broadened.
NOTE: lifetime broadening contributes $<0.001 \mathrm{~cm}^{-1}$ to homogeneous broadening. The fact that $\frac{\Delta \tilde{v}_{L}}{\Delta \tilde{v}_{D}} \simeq 7$ means that the cross-section calculated in part (a) is slightly overestimated.
(d) Convert the peak absorption cross section in cm^{2} to the peak molar absorption coefficient ϵ.

No Answer given

6. For Ar atoms at room temperature $\left(20^{\circ} \mathrm{C}\right)$ and 1 -Torr pressure, estimate a collision frequency for an atom from the van der Waals radius of $1.5 \AA$. What is the corresponding pressure-broadening coefficient in MHz/Torr?
Answer: Collision rate was determined using equations from P. W. Atkins, Physical Chemistry, $2^{\text {nd }}$ edition.
From Bernath, Eq. (1.79)

$$
\begin{aligned}
\Delta v_{1 / 2} & =\frac{1}{\pi T_{2}} \quad ; \quad T_{2} \text { is the average time between collisions } \\
T_{2} & =z^{-1} ; \quad z=\text { collision rate } \\
z & =\sqrt{2} \sigma \bar{c} \frac{N}{V} \\
\sigma & =\pi r^{2}=\pi\left[1.5 \times 10^{-8} \mathrm{~cm}\right]^{2}=7.07 \times 10^{-16} \mathrm{~cm}^{2} \\
\bar{c} & =14551\left(\frac{T}{M}\right)^{1 / 2} \mathrm{~cm} \mathrm{~s}^{-1}=3.80 \times 10^{4} \mathrm{~cm} \mathrm{~s}^{-1} \\
\frac{N}{V} & =\frac{p}{R T}=\left[\frac{\mathrm{p} / \text { torr }}{\mathrm{T} / \mathrm{K}}\right] \times \frac{1 \text { torr } \times \frac{1}{760} \mathrm{~atm} \mathrm{arr}^{-1} \times 10^{-3} \ell \mathrm{~cm}^{-3}}{1 K \times 0.08206 \ell \mathrm{~atm} \mathrm{~mole}^{-1} K^{-1}} 6.022 \times 10^{23} \text { molecules } \cdot \mathrm{mole}^{-1} \\
& =9.656 \times 10^{18}\left(\frac{p}{T}\right) \text { molecules } \mathrm{cm}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
\Delta v_{1 / 2} & =\frac{1}{\pi T_{2}}=\frac{z}{\pi}=\left[\frac{1}{\pi} \sqrt{2}\left(\pi r^{2}\right) 14551\left(\frac{T}{M}\right)^{1 / 2} \frac{9.656 \times 10^{18}}{T}\right] p \\
& =\sqrt{2}\left(1.5 \times 10^{-8} \mathrm{~cm}\right)^{2}\left(\frac{293}{40}\right)^{1 / 2} 14551 \frac{9.656 \times 10^{18}}{293} p \\
& =0.41 \mathrm{MHz} / \text { torr } \times \mathrm{p} / \text { torr }
\end{aligned}
$$

7. Solve the following set of linear equations using matrix methods

$$
\begin{aligned}
& 4 x-3 y+z=11 \\
& 2 x+y-4 z=-1 \\
& x+2 y-2 z=1
\end{aligned}
$$

Answer:

$$
\left[\begin{array}{ccc}
4 & -3 & 1 \\
2 & 1 & -4 \\
1 & 2 & -2
\end{array}\right] x=\left[\begin{array}{c}
11 \\
-1 \\
1
\end{array}\right]
$$

Answer: \#7, continued

$$
\begin{aligned}
\mathbf{A} \boldsymbol{x} & =\boldsymbol{b} \\
\boldsymbol{x} & =\mathbf{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

The difficult part of this problem is calculating \mathbf{A}^{-1}. Bernath, Eq. (3.28) $\left(\mathbf{A}^{-1}\right)_{i j}=\frac{M_{j i}}{|\mathbf{A}|}$

$$
\begin{aligned}
&|\mathbf{A}|=4\left|\begin{array}{ll}
1 & -4 \\
2 & -2
\end{array}\right|-(-3)\left|\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right|+(1)\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right| \\
&=4[-2-(-8)]+3[-4-(-4)]+[4-1] \\
&=27 \\
& M_{11}=(-1)^{2}\left|\begin{array}{ll}
1 & -4 \\
2 & -2
\end{array}\right|=6 \\
& M_{12}=(-1)^{3}\left|\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right|=0 \\
& M_{13}=(-1)^{4}\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=3 \\
& M_{21}=(-1)^{3}\left|\begin{array}{cc}
-3 & 1 \\
2 & -2
\end{array}\right|=-4 \\
& M_{22}=(-1)^{4}\left|\begin{array}{ll}
4 & 1 \\
1 & -2
\end{array}\right|=-9 \\
& M_{23}=(-1)^{5}\left|\begin{array}{ll}
4 & -3 \\
1 & 2
\end{array}\right|=-11 \\
& M_{31}=(-1)^{4}\left|\begin{array}{cc}
-3 & 1 \\
1 & -4
\end{array}\right|=11 \\
& M_{32}=(-1)^{5}\left|\begin{array}{ll}
4 & 1 \\
2 & -4
\end{array}\right|=18 \\
& M_{33}=(-1)^{6}\left|\begin{array}{ll}
4 & -3 \\
1 & 1
\end{array}\right|=10 \\
& \boldsymbol{x}=\left[\begin{array}{ll}
3 \\
1 \\
2
\end{array}\right] \\
& \mathbf{A}^{-1} \boldsymbol{b}\left.=\frac{1}{27} \left\lvert\, \begin{array}{ll}
6 & -4 \\
0 & 11 \\
3 & -11 \\
18
\end{array}\right.\right] \\
& \mathbf{A}^{-1} \boldsymbol{b}=\frac{1}{27} \left\lvert\,\left[\begin{array}{lll}
6 & -4 & 11 \\
0 & -9 & 18 \\
3 & -11 & 10
\end{array}\right]\left[\begin{array}{l}
11 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\right. \\
&
\end{aligned}
$$

8. (a) Find the eigenvalues and normalized eigenvectors of the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 4-i \\
4+i & -14
\end{array}\right) .
$$

Answer: It will be much easier to find the eigenvalues and eigenvectors if we rewrite \mathbf{A} as follows:

$$
\begin{array}{rlrl}
\mathbf{A} & =\left[\begin{array}{cc}
\epsilon^{\circ} & V^{\star} \\
V & -\epsilon^{\circ}
\end{array}\right] & +\left[\begin{array}{cc}
\bar{\epsilon} & 0 \\
0 & \bar{\epsilon}
\end{array}\right] \\
\mathbf{B} & +\bar{\epsilon} \mathbf{I} \\
\bar{\epsilon} & =\frac{1}{2}(2-14) & =-6 \\
\epsilon^{\circ} & =8 \\
V^{\star} V=|V|^{2} & =(4+i)(4-i)=17
\end{array}
$$

Eigenvalues of \mathbf{A} are found by solving $\operatorname{det}[\mathbf{B}-E \mathbf{I}]=0$ and adding $\bar{\epsilon}$

$$
\begin{aligned}
\operatorname{det}[\mathbf{B}-E \mathbf{I}] & =\left(\epsilon^{\circ}-E\right)\left(-\epsilon^{\circ}-E\right)-|V|^{2}=0 \\
E^{2} & =\left(\epsilon^{\circ}\right)^{2}+|V|^{2} \\
E & = \pm 9 \quad, \quad \bar{\epsilon}=-6
\end{aligned}
$$

The eigenvalues of \mathbf{A} are +3 and -15 . Determine the eigenvectors of \mathbf{A} by substituting the appropriate values of ϵ into $\mathbf{A}-\epsilon \mathbf{I}$

$$
\epsilon_{1}=+3 \quad \mathbf{A}-\epsilon_{1} \mathbf{I}=\left[\begin{array}{cc}
-1 & 4-i \\
4+i & -17
\end{array}\right]
$$

Normalize it to unit length

$$
\begin{gathered}
\epsilon_{1}=+3, \boldsymbol{u}_{1}=\frac{1}{\sqrt{18}}\left[\begin{array}{c}
4-i \\
1
\end{array}\right] \\
\epsilon_{2}=-15 \quad \mathbf{A}-\epsilon_{2} \mathbf{I}=\left[\begin{array}{cc}
17 & 4-i \\
4+i & 1
\end{array}\right]
\end{gathered}
$$

Same as for ϵ_{1}, but

$$
\epsilon_{2}=-15, \boldsymbol{u}_{2}=\frac{1}{\sqrt{18}}\left[\begin{array}{c}
-1 \\
4+i
\end{array}\right]
$$

(b) Construct the matrix \mathbf{X} that diagonalizes \mathbf{A} and verify that it works.

Answer: X, which diagonalizes A, consists of the column vectors \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.

$$
\begin{aligned}
\mathbf{X}^{-1} \mathbf{A X} & =\mathbf{\Lambda} \\
\mathbf{X} & =\frac{1}{\sqrt{18}}\left[\begin{array}{cc}
-1 & 4-i \\
4+i & 1
\end{array}\right] \\
\mathbf{X}^{-1} & =\mathbf{X}=\left(\mathbf{X}^{\star}\right)^{T}
\end{aligned}
$$

Let $a=4+i, a^{\star}=4-i, a^{\star} a=17$

$$
\begin{aligned}
\mathbf{X}^{-1} \mathbf{A} \mathbf{X} & =\frac{1}{18}\left[\begin{array}{cc}
-1 & a^{\star} \\
a & 1
\end{array}\right]\left[\begin{array}{cc}
2 & a^{\star} \\
a & -14
\end{array}\right]\left[\begin{array}{cc}
-1 & a^{\star} \\
a & 1
\end{array}\right] \\
& =\frac{1}{18}\left[\begin{array}{cc}
-1 & a^{\star} \\
a & 1
\end{array}\right]\left[\begin{array}{cc}
15 & 3 a^{\star} \\
-15 a & 3
\end{array}\right] \\
& =\frac{1}{18}\left[\begin{array}{cc}
-15(1+17) & 0 \\
0 & 3(17+1)
\end{array}\right]=\left[\begin{array}{cc}
-15 & 0 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

\mathbf{X} diagonalizes \mathbf{A}.
9. Given the matrices \mathbf{A} and \mathbf{B} as

$$
\mathbf{A}=\left(\begin{array}{ccc}
-\frac{1}{3} & \sqrt{\frac{2}{3}} & \frac{\sqrt{2}}{3} \\
\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
\frac{\sqrt{2}}{3} & \frac{1}{\sqrt{3}} & -\frac{2}{3}
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
\frac{5}{3} & \frac{1}{\sqrt{6}} & -\frac{1}{3 \sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{3}{2} & \frac{1}{2 \sqrt{3}} \\
-\frac{1}{3 \sqrt{2}} & \frac{1}{2 \sqrt{3}} & \frac{11}{6}
\end{array}\right) .
$$

Show that \mathbf{A} and \mathbf{B} commute. Find their eigenvalues and eigenvectors, and obtain a unitary transformation matrix \mathbf{U} that diagonalizes both \mathbf{A} and \mathbf{B}.

Answer:

$\mathbf{A}=$		
-.33333	.81650	.47140
.81650	.00000	.57735
.47140	.57735	-.66667
$\mathbf{B}=$		
1.66667	.40825	-.23570
.40825	1.50000	.28868
-.23570	.28868	1.83333

10. Obtain eigenvalues and eigenvectors of the matrix

$$
\mathbf{H}=\left(\begin{array}{ccc}
1 & 2 \alpha & 0 \\
2 \alpha & 2+\alpha & 3 \alpha \\
0 & 3 \alpha & 3+2 \alpha
\end{array}\right)
$$

to second order in the small parameter α.
Answer:

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{ccc}
1 & 2 \alpha & 0 \\
2 \alpha & 2+\alpha & 3 \alpha \\
0 & 3 \alpha & 3+2 \alpha
\end{array}\right] \\
\mathbf{H} & =\mathbf{H}^{\circ}+\mathbf{H}^{\prime} \\
\mathbf{H}^{\circ} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \quad, \quad \mathbf{H}^{\prime}=\alpha\left[\begin{array}{lll}
0 & 2 & 0 \\
2 & 1 & 3 \\
0 & 3 & 2
\end{array}\right]
\end{aligned}
$$

Energy corrected to second order:

$$
\begin{aligned}
& E_{i}=E_{i}^{\circ}+\langle i| \mathbf{H}^{\prime}|i\rangle+\sum_{i \neq j} \frac{\left.\left|\langle i| \mathbf{H}^{\prime}\right| j\right\rangle\left.\right|^{2}}{E_{i}^{\circ}-E_{j}^{\circ}} \\
&\langle 1| \mathbf{H}^{\prime}|1\rangle=0 \\
&\langle 1| \mathbf{H}^{\prime}|2\rangle=2 \alpha \\
&\langle 1| \mathbf{H}^{\prime}|3\rangle=0 \\
&\langle 2| \mathbf{H}^{\prime}|2\rangle=\alpha \\
&\langle 2| \mathbf{H}^{\prime}|3\rangle=3 \alpha \\
&\langle 3| \mathbf{H}^{\prime}|3\rangle=2 \alpha \\
& E_{1}=1+0+\frac{(2 \alpha)^{2}}{1-2}=1-4 \alpha^{2} \\
& E_{2}=2+\alpha+\left\{\frac{(2 \alpha)^{2}}{2-1}+\frac{(3 \alpha)^{2}}{2-3}\right\}=2+\alpha-5 \alpha^{2} \\
& E_{3}=3+2 \alpha+\frac{(3 \alpha)^{2}}{3-2}=3+2 \alpha+9 \alpha^{2} \\
&|i\rangle=|i\rangle^{\circ}+\sum_{i \neq j} \frac{H_{i j}}{E_{i}^{\circ}-E_{j}^{\circ}}|j\rangle^{\circ} \\
&|1\rangle=|1\rangle^{\circ}-2 \alpha|2\rangle^{\circ} \\
&|2\rangle=|2\rangle^{\circ}+2 \alpha|1\rangle^{\circ}-3 \alpha|3\rangle^{\circ} \\
&|3\rangle=|3\rangle^{\circ}+3 \alpha|2\rangle^{\circ}
\end{aligned}
$$

Answer: \# 10, continued

Checking orthogonality:

$$
\begin{aligned}
& \langle 1 \mid 2\rangle=0 \\
& \langle 1 \mid 3\rangle=-6 \alpha^{2} \quad ; \quad \alpha \ll 1, \text { so approaches zero } \\
& \langle 2 \mid 3\rangle=0
\end{aligned}
$$

11. A particle of mass m is confined to an infinite potential box with potential

$$
V(x)=\left\{\begin{array}{cc}
\infty, & x<0, x>L, \\
k\left(1-\frac{x}{L}\right), & 0 \leq x \leq L .
\end{array}\right.
$$

Calculate the ground and fourth excited-state energies of the particle in this box using first-order perturbation theory. Obtain the ground and fourth excited-state wavefunctions to first order, and sketch their appearance. How do they differ from the corresponding unperturbed wavefunctions?

Answer: Particle of mass m confined a perturbed square well potential.

$$
\begin{gathered}
\psi_{n}^{\circ}(x)=\left(\frac{2}{L}\right)^{1 / 2} \sin \frac{n \pi}{L} x \\
V(x)=\left\{\begin{array}{cc}
\infty, & x<0, x>L \\
k\left(1-\frac{x}{L}\right), \quad 0 \leq x \leq L
\end{array}\right. \\
\mathbf{H}^{\prime}=k\left(1-\frac{x}{L}\right) \\
\left\langle\psi_{n}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{n}^{\circ}\right\rangle=k-\frac{k}{L}\left(\frac{2}{L}\right)\left(\frac{L}{n \pi}\right)^{2} \int_{0}^{n \pi} x \sin ^{2} x d x \\
= \\
\left\langle\psi_{n}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{m}^{\circ}\right\rangle= \\
(n \pi)^{2} \\
\frac{2 k}{4}\left\langle\psi_{n}^{\circ} \mid \psi_{m}^{\circ}\right\rangle-\frac{2 k}{L^{2}} \int_{0}^{L} x\left(\sin \frac{n \pi}{L} x\right)\left(\sin \frac{m \pi}{L} x\right) d x
\end{gathered}
$$

$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$

$$
\begin{aligned}
\left\langle\psi_{n}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{m}^{\circ}\right\rangle & =\frac{-k}{L^{2}}\left[\int_{0}^{L} x \cos \frac{(n-m) \pi}{L} x d x-\int_{0}^{L} x \frac{\cos (n+m)}{L} x d x\right] \\
& =\frac{-k}{L^{2}}\left[\frac{L^{2}}{(n-m)^{2} \pi^{2}} \int_{0}^{(n-m) \pi} x \cos x d x-\frac{L^{2}}{(n+m)^{2} \pi^{2}} \int_{0}^{(n+m) \pi} x \cos x d x\right]
\end{aligned}
$$

$n \pm m=$ even, $\left\langle\psi_{n}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{m}^{\circ}\right\rangle=0$

Answer: \#11, continued
$n \pm m=$ odd,

$$
\begin{aligned}
\left\langle\psi_{n}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{m}^{\circ}\right\rangle & =\frac{+2 k}{\pi^{2}}\left[\frac{1}{(n-m)^{2}}-\frac{1}{(n+m)^{2}}\right]=\frac{2 k}{\pi^{2}}\left[\frac{4 n m}{(n+m)^{2}(n-m)^{2}}\right] \\
\left\langle\psi_{1}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{2}^{\circ}\right\rangle & =\frac{2 k}{\pi^{2}}\left(\frac{8}{9}\right) \\
\left\langle\psi_{1}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{4}^{\circ}\right\rangle & =\frac{2 k}{\pi^{2}}\left(\frac{16}{225}\right) \\
\left\langle\psi_{4}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{3}^{\circ}\right\rangle & =\frac{2 k}{\pi^{2}}\left(\frac{48}{49}\right) \\
\left\langle\psi_{4}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{3}^{\circ}\right\rangle & =\frac{2 k}{\pi^{2}}\left(\frac{80}{81}\right) \\
\left\langle\psi_{4}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{7}^{\circ}\right\rangle & =\frac{2 k}{\pi^{2}}\left(\frac{112}{1089}\right)
\end{aligned}
$$

$\Delta n \geq 3$ perturbations contribute extraordinarily little relative to $\Delta n=1$

$$
\begin{aligned}
E_{1} & =E_{1}^{\circ}+\left\langle\psi_{1}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{1}^{\circ}\right\rangle \\
& =\alpha+\frac{1}{2} k \quad ; \alpha=\frac{h^{2}}{8 m L^{2}} \\
E_{4} & =E_{4}^{\circ}+\left\langle\psi_{4}^{\circ}\right| \mathbf{H}^{\prime}\left|\psi_{4}^{\circ}\right\rangle \\
& =16 \alpha+\frac{1}{2} k
\end{aligned}
$$

To first order

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=\left|\psi_{1}^{\circ}\right\rangle-\frac{2 k}{\pi^{2} \alpha}\left(\frac{8}{27}\right)\left|\psi_{2}^{\circ}\right\rangle \\
& \left|\psi_{4}\right\rangle=\left|\psi_{4}^{\circ}\right\rangle+\frac{2 k}{\pi^{2} \alpha}\left[\left(\frac{48}{343}\right)\left|\psi_{3}^{\circ}\right\rangle-\left(\frac{80}{729}\right)\left|\psi_{5}^{\circ}\right\rangle\right]
\end{aligned}
$$

We can rewrite the ψ 's in terms of a single parameter, β

$$
\begin{aligned}
\left|\psi_{1}\right\rangle= & \left|\psi_{1}^{\circ}\right\rangle-0.296 \beta\left|\psi_{2}^{\circ}\right\rangle \\
\left|\psi_{4}\right\rangle= & \left|\psi_{4}^{\circ}\right\rangle+0.140 \beta\left|\psi_{3}^{\circ}\right\rangle-0.110 \beta\left|\psi_{5}^{\circ}\right\rangle \\
& |\beta| \ll 1 \quad ; \quad \beta=\frac{2 k}{\pi^{2} \alpha}
\end{aligned}
$$

Establishing the qualitative effect on $\left|\psi_{1}\right\rangle$ is simple

Mixing in $-0.296 \beta\left|\psi_{2}^{\circ}\right\rangle$ makes $\left|\psi_{1}\right\rangle$ asymmetric, with a slightly increased probability of finding the particle on "L-side" of the well.
Answer: \#11, continued
$n \pm m=$ odd,

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\left|\psi_{1}^{\circ}\right\rangle-0.296 \beta\left|\psi_{2}^{\circ}\right\rangle \\
\beta & =0,0.05,0.1,0.2
\end{aligned}
$$

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =\left|\psi_{4}^{\circ}\right\rangle+0.140 \beta\left|\psi_{3}^{\circ}\right\rangle-0.110 \beta\left|\psi_{5}^{\circ}\right\rangle \\
\beta & =0,0.2,0.5,1
\end{aligned}
$$

