MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Chemistry 5.76
Spring 1976

Problem Set \#1

1. Given $\left[x_{k}, p_{j}\right]=\left(x_{k} p_{j}-p_{j} x_{k}\right)=i \hbar \delta_{j k}$
and
$\vec{L} \equiv \vec{r} \times \vec{p} \equiv\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ x & y & z \\ p_{x} & p_{y} & p_{z}\end{array}\right|$
Show that
(a) $\left[L_{i}, L_{i}\right]=0 \quad i=x, y, z$
(b) $\left[L_{i}, L_{j}\right]=i \hbar L_{k} \quad(i, j, k)=(x, y, z)$ and cyclic permutations.
2. Consider the Hamiltonian matrix constructed in the $\{\phi\}$ basis.

$$
\mathbf{H}=\left(\begin{array}{ccc}
-\alpha & \beta & 0 \\
\beta & -\alpha & \beta \\
0 & \beta & 2 \alpha
\end{array}\right) \quad \boldsymbol{\phi}=\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

α, β are real numbers.
(a) Give eigenvalues, their corresponding eigenvectors, and the unitary transformation which brings \mathbf{H} to diagonal form

$$
\left(\mathbf{U}^{\dagger} \mathbf{H} \mathbf{U}\right)_{i j}=E \delta_{i j} .
$$

(HINT: Use trigonometric form of solution for cubic equation.)
(b) Can the eigenvalues be evenly spaced for clever choice of α, β ?
(c) Can two of the eigenvalues ever be degenerate for nonzero β ?
3. Carry out the angular momentum algebra and show explicitly that $\left\langle\ell \ell_{z}\right| \mathbf{j}_{x}\left|\ell \ell_{z}\right\rangle=0$, and that $\left\langle\mathbf{J}_{x}^{2}\right\rangle-\left\langle\mathbf{J}_{x}\right\rangle^{2} \neq 0$.
4. (a) Given the matrix elements of the coordinate x for a harmonic oscillator:

$$
\langle v| \mathbf{x}\left|v^{\prime}\right\rangle=\int \psi_{v}^{*} x \psi_{v^{\prime}} d x=0 \text { unless } v^{\prime}=v \pm 1
$$

and

$$
\begin{aligned}
\langle v+1| \mathbf{x}|v\rangle & =(2 \beta)^{-1 / 2}(v+1)^{1 / 2} \\
\langle v-1| \mathbf{x}|v\rangle & =(2 \beta)^{-1 / 2}(v)^{1 / 2}
\end{aligned}
$$

where $\beta=4 \pi^{2} m \omega / h$, and $\omega=\frac{1}{2 \pi}[k / \mu]^{1 / 2}$ is the vibrational harmonic frequency.
Evaluate the nonzero matrix elements of $\mathbf{x}^{2}, \mathbf{x}^{3}$, and \mathbf{x}^{4}; that is, evaluate the integrals

$$
\langle v| \mathbf{x}^{r}\left|v^{\prime}\right\rangle=\int \psi_{v} x^{r} \psi v^{\prime} d x
$$

for $r=2,3$, and 4 (without actually doing the explicit integrals, of course!).
(b) From the results of part a, evaluate the average values of $\mathbf{x}, \mathbf{x}^{2}, \mathbf{x}^{3}$, and \mathbf{x}^{4} in the v th vibrational state. Is it true that $\bar{x}^{2}=(\bar{x})^{2}$, or that $\mathbf{x}^{4}=\left(\mathbf{x}^{2}\right)^{2}$? What conclusions can you draw about the results of a measurement of x in the v th vibrational state?

