5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.80 Small-Molecule Spectroscopy and Dynamics Fall, 2008

Problem Set #2 ANSWERS

Reading Assignment: Bernath, Chapter 5

The following handouts also contain useful information:

C & S, page 117, radial expectation values of r^k for 1-e⁻ atoms LS \rightarrow (j,j')_J Coupling Patterns Herzberg pp. 177-181, The Interval Rule: Analysis of Multiplets

Problems 1-4 deal with material from my 2/11/94 lecture (Lecture 7). A lot of background material is provided. These problems illustrate non-text material dealing with 2×2 secular equations, perturbation theory, transition probabilities, quantum mechanical interference effects, and atomic **L**-**S**-**J** vs. $j_1 - j_2 - J$ limiting cases. C & S references are to Condon and Shortley "The Theory of Atomic Spectra." Problems 5-9 are standard textbook problems, more basic, and much easier than 1-4 and 10.

BACKGROUND MATERIAL FOR PROBLEMS 1-4

(i) <u>Transition Amplitudes for $np^2 \leftarrow np n's$ Transitions in the L-S-J Limit</u>

$$\mu \equiv -e3^{-1/2} \int_0^\infty R_{np} \quad r \quad R_{n's} dr$$
 C&S, p. 245.

C&S, p. 247 gives all nonzero transition amplitudes:

$$\langle p^{2} {}^{1}S | \mu | sp {}^{1}P_{1} \rangle = -(20)^{1/2} \mu$$

$$\langle p^{2} {}^{1}D | \mu | sp {}^{1}P_{1} \rangle = +10 \mu$$

$$\langle p^{2} {}^{3}P_{0} | \mu | sp {}^{3}P_{1} \rangle = -(20)^{1/2} \mu$$

$$\langle p^{2} {}^{3}P_{1} | \mu | sp {}^{3}P_{0} \rangle = -(20)^{1/2} \mu$$

$$\langle p^{2} {}^{3}P_{1} | \mu | sp {}^{3}P_{1} \rangle = +(15)^{1/2} \mu$$

$$\langle p^{2} {}^{3}P_{1} | \mu | sp {}^{3}P_{2} \rangle = -5 \mu$$

$$\langle p^{2} {}^{3}P_{2} | \mu | sp {}^{3}P_{1} \rangle = -5 \mu$$

$$\langle p^{2} {}^{3}P_{2} | \mu | sp {}^{3}P_{2} \rangle = +(75)^{1/2} \mu.$$

All other transition amplitudes are zero, most notably:

$$\left< p^{2} {}^{3}P_{0} \left| \mu \right| s p^{-3} P_{0} \right> = 0$$

because there is no way to add one unit of photon angular momentum to an initial state with J = 0 to make a final state with J = 0.

In the L–S–J limit, for p^2 (see C&S, pp. 198, 268):

$$\mathbf{H}^{SO} = \begin{bmatrix} {}^{1}S_{0} & 0 & -2^{1/2}\zeta \\ {}^{3}P_{0} & -2^{1/2}\zeta & -\zeta \\ & -\zeta & & \\ & -\frac{1}{2}\zeta & & \\ & -\frac{1}{2}\zeta & 2^{-1/2}\zeta \\ & & \frac{1}{2}\zeta & 2^{-1/2}\zeta \\ & & 2^{1/2}\zeta & 0 \end{bmatrix}$$

So we have three effective Hamiltonians for $(np)^2$

$$\begin{aligned} \mathbf{H}(0) &= \begin{vmatrix} F_0 + 10F_2 & -2^{+1/2}\zeta \\ -2^{+1/2}\zeta & F_0 - 5F_2 - \zeta \end{vmatrix} = F_0 + \frac{5}{2}F_2 - \frac{1}{2}\zeta + \begin{vmatrix} \Delta_0 & V_0 \\ V_0 & -\Delta_0 \end{vmatrix} \\ \Delta_0 &= \frac{15}{2}F_2 + \frac{1}{2}\zeta & V_0 = -2^{+1/2}\zeta \\ \mathbf{H}(1) &= F_0 - 5F_2 - \frac{1}{2}\zeta \\ \mathbf{H}(2) &= \begin{vmatrix} F_0 - 5F_2 - \frac{1}{2}\zeta \\ 2^{-1/2}\zeta & F_0 + F_2 \end{vmatrix} = F_0 - 2F_2 + \frac{1}{4}\zeta + \begin{vmatrix} -\Delta_2 & V_2 \\ V_2 & +\Delta_2 \end{vmatrix} \\ \Delta_2 &= 3F_2 - \frac{1}{4}\zeta & V_0 = -2^{-1/2}\zeta \end{aligned}$$

Similarly, for the sp configuration:

and there are three effective Hamiltonians for (n's)(np)

 $\mathbf{H}(0) = \mathbf{F}_0 - \mathbf{G}_1 - \boldsymbol{\zeta}$ Problem Set #2 ANSWERS

$$\mathbf{H}(1) = \mathbf{F}_0 - \frac{1}{4}\zeta + \begin{vmatrix} -\Delta_1 & V_1 \\ V_1 & \Delta_1 \end{vmatrix} \qquad \Delta_1 = \mathbf{G}_1 + \frac{1}{4}\zeta \qquad V_1 = 2^{-1/2}\zeta$$
$$\mathbf{H}(2) = \mathbf{F}_0 - \mathbf{G}_1 + \frac{1}{2}\zeta$$

(iii) Now we are ready to discuss the energy level diagram and relative intensities of all spectral lines for transitions between $(np)^2 \leftarrow (n's)(np)$ configurations. The relevant parameters are:

$F_0(np,np) - F_0(n's,np) \equiv \Delta F_0$	(difference in repulsion energy for np by np vs. np by n's; $\Delta F_0 > 0$ if n' = n)
ζ(np)	(spin-orbit parameter for np; same for both configurations), $\zeta > 0$ by definition
F ₂ (np, np)	(quadrupolar repulsion between two np electrons) $F_2 > 0$.
$G^{1}(n's, np)$	(exchange integral) $G_1 > 0$.
μ	$(np \leftarrow n's transition moment integral)$

All spectral line frequencies and intensities may be derived from these 5 fundamental electronic constants. Note that there are 5 L–S–J terms in np² and 4 L–S–J terms in np n's, in principle giving rise to a "transition array" consisting of 5×4 transitions. The 5 parameters determine 20 frequencies and 20 intensities! We are not limited to the L–S–J or the $j_1 - j_2 - J$ limit.

1. Construct level diagrams for the p² and sp configurations at the L–S–J limit ($\zeta = 0$), the j–j limit ($F_2 = 0$ for p², $G_1 = 0$ for sp), and at several intermediate values of ζ/F_2 or ζ/G_1 . This sort of diagram is called a "correlation diagram". For graphical purposes it is convenient to keep constant the quantity, which determines the splitting between highest and lowest levels of p²,

$$\frac{225}{4}F_{2}^{2} + \frac{15}{2}F_{2}\zeta + \frac{9}{4}\zeta^{2} \equiv \Delta E(p^{2}),$$

and a similar quantity for sp,

$$G_1^2 + \frac{9}{16}\zeta^2 + \frac{1}{2}G_1\zeta \equiv \Delta E(sp) \,.$$

Correlation diagrams for sp and p^2 configurations can be found on pages 272 and 275 of Condon and Shortley.

For sp, $\chi = \frac{3\zeta}{4G_1}$

2. Use the first order non-degenerate perturbation theory correction to the *wavefunctions* to compute the intensities for $p^2 \leftarrow$ sp transitions near the L–S–J limit ($\zeta \ll F_2$ for p^2 , $\zeta \ll G_1$ for sp). For example, the "nominal" sp 1P_1 level becomes

$$| (sp^{-1}P_{1}) \rangle = | sp^{-1}P_{1} \rangle + \frac{\mathbf{H}_{_{1}P_{1}}^{_{3}}}{\mathbf{E}_{_{1}P_{1}}^{_{0}} - \mathbf{E}_{_{3}P_{1}}^{^{0}}} | sp^{-3}P_{1} \rangle = | sp^{-1}P_{1} \rangle + \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta} | sp^{-3}P_{1} \rangle.$$

The transition probability is the square of the transition amplitude, so the "nominally forbidden" transition $p^{2} {}^{3}P_{1} \leftarrow sp {}^{1}P_{1}$ has a transition probability

$$P({}^{3}P_{1} \leftarrow {}^{1}P_{1}) = \left| \left\langle {}^{s}p {}^{1}P_{1} \right\rangle | \mu| {}^{s}p^{2} {}^{3}P_{1} \right\rangle \right|^{2} = \frac{2\zeta^{2}}{\left(2G_{1} + \frac{1}{2}\zeta\right)^{2}} \mu^{2}(15).$$

Note that, for the transitions between either of the two sp J = 1 levels and either of the two p² J = 2 or J = 0 levels, the transition probability includes two amplitudes which must be summed before squaring. This gives rise to quantum mechanical interference effects. In fact, it is because of these interference effects that the j–j limit $(3/2, 3/2)_2 \leftarrow (1/2, 1/2)_1$ and $(1/2, 1/2)_0 \leftarrow (1/2, 1/2)_1$ transitions become rigorously forbidden.

$$(1/2, 1/2)_{1} \text{ transitions become rigorously}$$

$$\psi's \text{ corrected to } 1^{st} \text{ order}$$

$$p^{2}: \qquad |^{\iota_{1}}D_{2}'\rangle = |^{\iota_{1}}D_{2}\rangle + \frac{2^{-1/2}\zeta}{6F_{2} - \frac{1}{2}\zeta}|^{3}P_{2}\rangle$$

$$|^{\iota_{3}}P_{2}'\rangle = |^{3}P_{2}\rangle - \frac{2^{-1/2}\zeta}{6F_{2} - \frac{1}{2}\zeta}|^{1}D_{2}\rangle$$

$$|^{\iota_{3}}P_{1}'\rangle = |^{3}P_{1}\rangle$$

$$|^{\iota_{3}}P_{0}'\rangle = |^{3}P_{0}\rangle + \frac{\sqrt{2}\zeta}{15F_{2} + \zeta}|^{1}S_{0}\rangle$$

$$|^{\iota_{1}}S_{0}'\rangle = |^{1}S_{0}\rangle - \frac{\sqrt{2}\zeta}{15F_{2} + \zeta}|^{3}P_{0}\rangle$$
sp:
$$|^{\iota_{3}}P_{2}'\rangle = |^{3}P_{2}\rangle$$

$$|^{\iota_{3}}P_{1}'\rangle = |^{3}P_{1}\rangle - \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta}|^{1}P_{1}\rangle$$

$$|^{\iota_{1}}P_{1}'\rangle = |^{1}P_{1}\rangle + \frac{2^{-1/2}\zeta}{2G_{2} + \frac{1}{2}\zeta}|^{3}P_{1}\rangle$$

$$\begin{vmatrix} {}^{\prime 1}\mathbf{P}_{1} & \rangle = \begin{vmatrix} {}^{1}\mathbf{P}_{1} \end{pmatrix} + \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta} \end{vmatrix}$$
$$\begin{vmatrix} {}^{\prime 3}\mathbf{P}_{0} & \rangle = \begin{vmatrix} {}^{3}\mathbf{P}_{0} \end{pmatrix}$$

Calculate intensities of selected 'forbidden' transitions:

$$\langle {}^{\prime 1}\mathbf{D}_{2}{}^{\prime }|\mu|{}^{\prime 3}\mathbf{P}_{1}{}^{\prime }\rangle = \underline{\langle {}^{1}\mathbf{D}_{2}|\mu|{}^{\prime 2}\mathbf{P}_{1}{}^{\prime }\rangle} - \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta} \langle {}^{1}\mathbf{D}_{2}|\mu|{}^{3}\mathbf{P}_{1}{}^{\prime }\rangle - \frac{2^{-1/2}\zeta}{\frac{1}{2}\zeta - 6F_{2}} \underbrace{\langle {}^{3}\mathbf{P}_{2}|\mu|{}^{3}\mathbf{P}_{1}{}^{\prime }}^{0} + \frac{\zeta^{2}\underline{\langle {}^{3}\mathbf{P}_{2}|\mu|{}^{4}\mathbf{P}_{1}{}^{\prime }}}{(4G_{1} + \zeta)(\frac{1}{2}\zeta - 6F_{2})} = -2^{-1/2}\zeta \left[\frac{10\mu}{2G_{1} + \frac{1}{2}\zeta} + \frac{-5\mu}{-6F_{2} + \frac{1}{2}\zeta}\right]$$

3. Condon and Shortley (p. 294) give the transformations from the L–S–J to the $j_1 - j_2 - J$ basis set. These transformed functions correspond to the functions that diagonalize \mathbf{H}^{SO} .

Construct the new $p^2 H(0)$, H(1), H(2) and sp H(0), H(1), H(2) matrices in the j-j basis using the above transformations.

The p^2 and sp H(J) matrices are easily found in the $j_1 - j_2 - J$ basis by determining the unitary transforms which transform the $j_1 - j_2 - J$ basis functions into L - S - J basis functions and using the fact that:

Problem Set #2 ANSWERS

$$\widetilde{\mathbf{H}} = \mathbf{U}^{\dagger}\mathbf{H}\mathbf{U}$$

$$\begin{aligned} \mathbf{p}^{2}, \mathbf{J} &= \mathbf{0} \qquad : \qquad \mathbf{U} \mathbf{\bar{x}} = \mathbf{\bar{x}}' \\ \begin{bmatrix} \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} &= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \rightarrow \begin{vmatrix} ^{1} \mathbf{S}_{0} \\ ^{3} \mathbf{P}_{0} \end{pmatrix} \qquad \mathbf{U}^{\dagger} = (\mathbf{U}^{\ast})^{\mathrm{T}} \\ &\uparrow \mathbf{U} \qquad \uparrow \left(\frac{1}{2} \ \frac{1}{2}\right)_{0} \ \left(\frac{3}{2} \ \frac{3}{2}\right)_{0} \end{aligned} \\ \mathbf{U}^{\dagger} &= \begin{bmatrix} \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \\ \mathbf{U}^{\dagger} \mathbf{H} \mathbf{U} &= \begin{bmatrix} \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{12} & \mathbf{H}_{22} \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \\ &= \begin{bmatrix} \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{3}} \mathbf{H}_{11} + \sqrt{\frac{2}{3}} \mathbf{H}_{12}, \quad \sqrt{\frac{2}{3}} \mathbf{H}_{11} - \sqrt{\frac{1}{3}} \mathbf{H}_{12} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{3} \mathbf{H}_{11} + \frac{2}{3} \mathbf{H}_{22} + \frac{2\sqrt{2}}{3} \mathbf{H}_{12} + \sqrt{\frac{2}{3}} \mathbf{H}_{12}, \quad \sqrt{\frac{2}{3}} \mathbf{H}_{12} - \sqrt{\frac{2}{3}} \mathbf{H}_{12} \\ &= \begin{bmatrix} \frac{1}{3} \mathbf{H}_{11} + \frac{2}{3} \mathbf{H}_{22} + \frac{2\sqrt{2}}{3} \mathbf{H}_{12} - \sqrt{\frac{2}{3}} \mathbf{H}_{12} \\ \frac{\sqrt{2}}{3} (\mathbf{H}_{11} - \mathbf{H}_{22}) - \frac{1}{3} \mathbf{H}_{12} - \frac{\sqrt{2}}{3} \mathbf{H}_{12} \\ &= \begin{bmatrix} \frac{1}{3} \mathbf{H}_{11} + \frac{2}{3} \mathbf{H}_{22} + \frac{2\sqrt{2}}{3} \mathbf{H}_{12} \\ \frac{\sqrt{2}}{3} (\mathbf{H}_{11} - \mathbf{H}_{22}) - \frac{1}{3} \mathbf{H}_{12} - \frac{2}{3} \mathbf{H}_{11} + \frac{1}{3} \mathbf{H}_{22} - \frac{2\sqrt{2}}{3} \mathbf{H}_{12} \end{bmatrix} \\ \mathrm{Tr}(\mathbf{\tilde{H}}) = \mathrm{Tr}(\mathbf{H}) = \mathbf{H}_{11} + \mathbf{H}_{22} \qquad \text{checks } \checkmark \\ |\langle \mathbf{p}^{2^{\prime 4}} \mathbf{D}_{2}^{\prime} | \boldsymbol{\mu} | \mathbf{s} \mathbf{p}^{\ast} \mathbf{P}_{1}^{\prime} \rangle|^{2} &= \frac{\zeta^{2}}{2} \begin{bmatrix} \frac{10}{2\mathbf{G}_{1} + \frac{1}{2}\boldsymbol{\zeta}} + \frac{5}{\mathbf{6F}_{2} - \frac{1}{2} \boldsymbol{\zeta}} \end{bmatrix}^{2} \mu^{2} \end{aligned}$$

Γ

 $G_1, F_2 \gg \zeta \text{ in } \mathbf{L} - \mathbf{S} - \mathbf{J} \text{ limit}$

$$\begin{split} \langle \mathbf{p}^{2}, \mathbf{q}^{1} \mathbf{S}_{0}, |\mu| | \mathbf{s} \mathbf{p}^{*3} \mathbf{P}_{1}, \rangle &= \langle \mathbf{s}_{0} | \mu|^{1} \mathbf{P}_{1} \rangle \stackrel{0}{=} \frac{\sqrt{2}\zeta}{15F_{2} - \zeta} \langle \mathbf{s}_{0} | \mu|^{1} \mathbf{P}_{1} \rangle \stackrel{0}{=} 0 \\ &- \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta} \langle \mathbf{s}_{0} | \mu|^{1} \mathbf{P}_{1} \rangle + 0 \left(\frac{\zeta^{2}}{F_{2}G_{1}} \right) \langle \mathbf{s}_{0} | \mu|^{3} \mathbf{P}_{1} \rangle \\ &= - \frac{\sqrt{2}\zeta}{15F_{2} - \zeta} \left(-\sqrt{20}\mu \right) - \frac{2^{-1/2}\zeta}{2G_{1} + \frac{1}{2}\zeta} \left(-\sqrt{20}\mu \right) \\ |\langle \mathbf{p}^{2} \cdot \mathbf{s}_{0}, |\mu| | \mathbf{s} \mathbf{p}^{*3} \mathbf{P}_{1}, \rangle |^{2} = 40 \mu^{2} \zeta^{2} \left[\frac{1}{15F_{2} - \zeta} + \frac{1}{4G_{1} + \zeta} \right]^{2} \\ &\mathbf{L} - \mathbf{S} - \mathbf{J} \text{ coupling} \\ \zeta \text{ can be neglected in the denominator} \\ \widetilde{\mathbf{H}}(1) &= \frac{1}{3} \left[\mathbf{H}_{11} + 2\mathbf{H}_{22} + 2\sqrt{2}\mathbf{H}_{12} - \mathbf{H}_{12} + \sqrt{2}(\mathbf{H}_{22} - \mathbf{H}_{11}) \right] \\ -\mathbf{H}_{12} + \sqrt{2}(\mathbf{H}_{22} - \mathbf{H}_{11}) - 2\mathbf{H}_{11} + \mathbf{H}_{22} - 2\sqrt{2}\mathbf{H}_{12} \right] \\ \mathbf{H}_{11}' &= \frac{1}{3} \left[\mathbf{F}_{0} - \mathbf{G}_{1} - \frac{1}{2}\zeta + 2(\mathbf{F}_{0} + \mathbf{G}_{1}) + 2\sqrt{2} \left(\frac{1}{\sqrt{2}} \zeta \right) \right] \\ &= \mathbf{F}_{0} + \frac{1}{3}\mathbf{G}_{1} + \frac{1}{2}\zeta \qquad \leftarrow \left(\frac{3}{2} \frac{3}{2} \right)_{1} \\ \mathbf{H}_{12}' &= -\frac{1}{\sqrt{2}}\zeta + \sqrt{2} \left[\mathbf{F}_{0} + \mathbf{G}_{1} - \left(\mathbf{F}_{0} - \mathbf{G}_{1} - \frac{1}{2}\zeta \right) \right] \\ &= 2\sqrt{2}\mathbf{G}_{1} \\ \mathbf{H}_{22}' &= \frac{1}{3} \left[2 \left(\mathbf{F}_{0} - \mathbf{G}_{1} - \frac{1}{2}\zeta \right) + \left(\mathbf{F}_{0} + \mathbf{G}_{1} \right) - 2\sqrt{2} \left(\frac{1}{\sqrt{2}} \zeta \right) \right] \\ &= \mathbf{F}_{0} - \frac{1}{3}\mathbf{G}_{1} - \zeta \qquad \leftarrow \left(\frac{1}{2} \frac{1}{2} \right)_{1} \\ \widetilde{\mathbf{H}}(1) &= \begin{bmatrix} \mathbf{F}_{0} + \frac{1}{3}\mathbf{G}_{1} + \frac{1}{2}\zeta - 2\sqrt{2}\mathbf{G}_{1} \\ 2\sqrt{2}\mathbf{G}_{1} & \mathbf{F}_{0} - \frac{1}{3}\mathbf{G}_{1} - \zeta \end{bmatrix}$$

$$\begin{aligned} J &= 2, \text{ sp} \\ U &= 1 \\ \widetilde{\mathbf{H}}(2) &= F_0 - G_1 + \frac{1}{2}\zeta \qquad \leftarrow \left(\frac{3}{2}\frac{1}{2}\right)_2 \\ \text{Most of the work done on the last four pages can also be found in the notes for Lecture #7.} \\ \mathbf{H}_{11} &= F_0 + 10F_2 \\ \mathbf{H}_{12} &= -\sqrt{2}\zeta \\ \mathbf{H}_{22} &= F_0 - 5F_2 - \zeta \\ \mathbf{H}_{11}' &= \frac{1}{3}(F_0 + 10F_2) + \frac{2}{3}(F_0 - 5F_2 - \zeta) + \frac{2}{3}\sqrt{2}\left(-\sqrt{2}\zeta\right) \\ &= F_0 - 2\zeta \qquad \leftarrow \left(\frac{1}{2}\frac{1}{2}\right)_0 \\ \mathbf{H}_{12}' &= \frac{\sqrt{2}}{3}(15F_2 + \zeta) + \frac{1}{3}(-\sqrt{2}\zeta) = 5\sqrt{2}F_2 \\ \mathbf{H}_{22}' &= \frac{2}{3}(F_0 + 10F_2) + \frac{1}{3}(F_0 - 5F_2 - \zeta) - \frac{2}{3}\sqrt{2}\left(-\sqrt{2}\zeta\right) \\ &= F_0 + 5F_2 + \zeta \qquad \leftarrow \left(\frac{3}{2}\frac{3}{2}\right)_0 \\ \widetilde{\mathbf{H}}(0) &= \left[\frac{F_0 - 2\zeta - 5\sqrt{2}F_2}{5\sqrt{2}F_2 - F_0 + 5F_2 + \zeta} \right] \\ p^2, J &= 1 \\ \mathbf{H}(1) &= F_0 - 5F_2 - \frac{1}{2}\zeta \qquad \leftarrow \left(\frac{3}{2}\frac{1}{2}\right)_1 \\ p^2, J &= 1 \\ \widetilde{\mathbf{H}}(1) &= F_0 - 5F_2 - \frac{1}{2}\zeta \qquad \leftarrow \left(\frac{3}{2}\frac{1}{2}\right)_1 \\ p^2, J &= 2 \\ \left[\sqrt{\frac{1}{3}} - \sqrt{\frac{2}{3}} \sqrt{\frac{1}{3}} \right] \begin{bmatrix} \mathbf{a}\left(\frac{3}{2}\frac{1}{2}\right)_2 \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \end{bmatrix} = \left[\frac{\alpha}{\beta} \right]^3 P_2 \\ p^2, J &= 2 \\ -\sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \end{bmatrix} = \left[\frac{\alpha}{\beta} \right]^3 P_2 \\ p^3, J &= 2 \\ \left[\sqrt{\frac{1}{3}} - \sqrt{\frac{2}{3}} \sqrt{\frac{1}{3}} \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \end{bmatrix} = \left[\frac{\alpha}{\beta} \right]^3 P_2 \\ p^3, J &= 2 \\ -\sqrt{\frac{2}{3}} - \sqrt{\frac{1}{3}} \sqrt{\frac{1}{3}} \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \end{bmatrix} = \left[\frac{\alpha}{\beta} \right]^3 P_2 \\ p^3, J &= 2 \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \end{bmatrix} = \left[\frac{\alpha}{\beta} \right]^3 P_2 \\ p^3, J &= 2 \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \\ p^3, J &= 2 \\ \mathbf{b}\left(\frac{3}{2}\frac{3}{2}\right)_2 \\ p^3, J &= 3 \\ \mathbf{b}\left(\frac{$$

$$\begin{split} \mathbf{U}^{*} &= \begin{bmatrix} \sqrt{\frac{1}{3}} & -\sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix} \\ \tilde{\mathbf{H}} &= \frac{1}{3} \begin{bmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{12} & \mathbf{H}_{22} \end{bmatrix} \begin{bmatrix} 1 & \sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{H}_{11} - \sqrt{2}\mathbf{H}_{12} & \sqrt{2}\mathbf{H}_{11} + \mathbf{H}_{12} \\ \mathbf{H}_{12} - \sqrt{2}\mathbf{H}_{22} & \sqrt{2}\mathbf{H}_{12} + \mathbf{H}_{22} \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} \mathbf{H}_{11} + 2\mathbf{H}_{22} - 2\sqrt{2}\mathbf{H}_{12} & \sqrt{2}\left(\mathbf{H}_{11} - \mathbf{H}_{22}\right) - \mathbf{H}_{12} \\ \sqrt{2}\left(\mathbf{H}_{11} - \mathbf{H}_{22}\right) - \mathbf{H}_{12} & 2\mathbf{H}_{11} + \mathbf{H}_{22} + 2\sqrt{2}\mathbf{H}_{12} \end{bmatrix} \\ \mathbf{H}_{11}' &= \frac{1}{3} \begin{bmatrix} F_{0} - 5F_{2} + \frac{1}{2}\zeta + 2(F_{0} + F_{2}) - 2\sqrt{2}\left(\frac{\zeta}{\sqrt{2}}\right) \end{bmatrix} \\ &= F_{0} - F_{2} - \frac{1}{2}\zeta \qquad \leftarrow \left(\frac{3}{2}\frac{1}{2}\right)_{2} \\ \mathbf{H}_{12}' &= \frac{1}{3} \begin{bmatrix} \sqrt{2} \left(-6F_{2} + \frac{1}{2}\zeta\right) - \frac{1}{\sqrt{2}}\zeta \end{bmatrix} = -2\sqrt{2}F_{2} \\ \mathbf{H}_{22}' &= \frac{1}{3} \begin{bmatrix} 2 \left(F_{0} - 5F_{2} + \frac{1}{2}\zeta\right) + \left(F_{0} + F_{2}\right) + 2\sqrt{2}\left(\frac{1}{\sqrt{2}}\zeta\right) \end{bmatrix} \\ &= F_{0} - 3F_{2} + \zeta \qquad \leftarrow \left(\frac{3}{2}\frac{3}{2}\right)_{2} \\ \widetilde{\mathbf{H}}(\mathbf{J} = 2) = \begin{bmatrix} F_{0} - F_{2} - \frac{1}{2}\zeta & -2\sqrt{2}F_{2} \\ -2\sqrt{2}F_{2} & F_{0} - 3F_{2} + \zeta \end{bmatrix} \end{aligned}$$

sp configuration

$$\widetilde{\mathbf{H}}(1) = \frac{1}{3} \begin{bmatrix} 1 & \sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{12} & \mathbf{H}_{22} \end{bmatrix} \begin{bmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$$

4. Use perturbation theory as in Problem 2 to compute the transition intensities near the j-j limit $(F_2 \ll \zeta \text{ or } G_1 \ll \zeta)$. You should discover that destructive interference starts to turn off the transitions that will become the forbidden ${}^{3}P_2 \leftarrow {}^{1}P_1$ and ${}^{3}P_0 \leftarrow {}^{1}P_1$ transitions in the L–S–J limit.

Transition amplitudes in the j – j basis [units of μ]. See also C + S, p. 265

$$sp \wedge p^{2} \quad \left(\frac{1}{2}\frac{1}{2}\right)_{0} \quad \left(\frac{3}{2}\frac{3}{2}\right)_{0} \quad \left(\frac{3}{2}\frac{1}{2}\right)_{1} \quad \left(\frac{3}{2}\frac{1}{2}\right)_{2} \quad \left(\frac{3}{2}\frac{3}{2}\right)_{2} \\ \left(\frac{3}{2}\frac{1}{2}\right)_{2} \quad 0 \quad 0 \quad -5 \quad 5 \quad \sqrt{50} \\ \left(\frac{3}{2}\frac{1}{2}\right)_{1} \quad 0 \quad -\sqrt{20} \quad -\sqrt{5} \quad -5 \quad \sqrt{50} \\ \left(\frac{1}{2}\frac{1}{2}\right)_{1} \quad -\sqrt{20} \quad 0 \quad \sqrt{10} \quad -\sqrt{50} \quad 0 \\ \left(\frac{1}{2}\frac{1}{2}\right)_{0} \quad 0 \quad 0 \quad \sqrt{20} \quad 0 \quad 0$$

Perturbed j - j basis functions (use result of Problem Set 2, #3).

$$P^{2}$$

$$\left(\frac{1}{2}\frac{1}{2}\frac{1}{2}\right)_{0}^{2} = \left(\frac{1}{2}\frac{1}{2}\right)_{0}^{2} - \frac{5\sqrt{2}F_{2}}{5F_{2} - 3\zeta} \left(\frac{3}{2}\frac{3}{2}\right)_{0}^{2}$$

$$\left(\frac{3}{2}\frac{3}{2}\right)_{0}^{2} = \left(\frac{3}{2}\frac{3}{2}\right)_{0}^{2} + \frac{5\sqrt{2}F_{2}}{5F_{2} - 3\zeta} \left(\frac{1}{2}\frac{1}{2}\right)_{0}^{2}$$

$$\left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} = \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} + \frac{2\sqrt{2}F_{2}}{4F_{2} - \frac{3}{2}\zeta} \left(\frac{3}{2}\frac{3}{2}\right)_{2}^{2}$$

$$\left(\frac{3}{2}\frac{3}{2}\right)_{2}^{2} = \left(\frac{3}{2}\frac{3}{2}\right)_{2}^{2} - \frac{2\sqrt{2}F_{2}}{4F_{2} - \frac{3}{2}\zeta} \left(\frac{3}{2}\frac{1}{2}\right)_{2}^{2}$$

Problem Set #2 ANSWERS

$$\begin{split} & \stackrel{\text{sp}}{\left(\frac{3}{2}\frac{1}{2}\right)_{2}^{2}} = \left(\frac{3}{2}\frac{1}{2}\right)_{2} \\ & \cdot \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} = \left(\frac{3}{2}\frac{1}{2}\right)_{1} + \frac{2\sqrt{2}G_{1}}{\frac{2}{3}G_{1} + \frac{3}{2}\zeta} \left(\frac{1}{2}\frac{1}{2}\right)_{1} \\ & \cdot \left(\frac{1}{2}\frac{1}{2}\right)_{1}^{2} = \left(\frac{1}{2}\frac{1}{2}\right)_{1} - \frac{2\sqrt{2}G_{1}}{\frac{2}{3}G_{1} + \frac{3}{2}\zeta} \left(\frac{3}{2}\frac{1}{2}\right)_{1} \\ & \cdot \left(\frac{1}{2}\frac{1}{2}\right)_{1}^{2} = \left(\frac{1}{2}\frac{1}{2}\right)_{0} \\ & \cdot \left(\frac{1}{2}\frac{1}{2}\right)_{0}^{2} = \left(\frac{1}{2}\frac{1}{2}\right)_{0} \\ & \frac{1}{2}\left(\frac{3}{2}\frac{3}{2}\right)_{2}^{2} \neq \right)^{1} P_{1} \rangle \\ & \left(\frac{1}{2}\frac{1}{2}\right)_{0}^{2} \rightarrow \right)^{1} P_{1} \rangle \\ & \left(\frac{1}{2}\frac{3}{2}\frac{3}{2}\right)_{2}^{2} \left|\hat{\mu}\right| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} \right) = \left\langle \left(\frac{3}{2}\frac{3}{2}\frac{3}{2}\right)_{2} \left|\hat{\mu}\right| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} \right\rangle \\ & + \alpha \left\langle \left(\frac{3}{2}\frac{1}{2}\right)_{2}\right\rangle \left|\hat{\mu}\right| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} \right\rangle \\ & + \alpha \left\langle \left(\frac{3}{2}\frac{1}{2}\right)_{2}\right\rangle \left|\hat{\mu}\right| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} \right\rangle \\ & + 0(\alpha\beta) \\ & \left\langle \left(\frac{3}{2}\frac{3}{2}\frac{3}{2}\right)_{2}^{2} \left|\hat{\mu}\right| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{2} \right\rangle = \sqrt{50} - 5\alpha \quad ; \quad \alpha = \frac{-2\sqrt{2}E_{2}}{4F_{2} - \frac{3}{2}\zeta} > 0 \qquad (because \zeta \gg F_{2} \\ near j-j limit \end{pmatrix} \\ \\ Correlates to {}^{3}P_{2} \leftarrow {}^{1}P_{1} transition and approaches zero intensity in L-S-J limit. \end{split}$$

$$\begin{pmatrix} \left(\frac{1}{2}\frac{1}{2}\right)_{0}^{\prime} |\hat{\mu}| \left(\frac{3}{2}\frac{1}{2}\right)_{1}^{\prime} \right) = \left\langle \left(\frac{1}{2}\frac{1}{2}\right)_{0} |\hat{\mu}| \left(\frac{3}{2}\frac{1}{2}\right)_{1} \right\rangle$$

$$+ \alpha \left\langle \left(\frac{3}{2}\frac{3}{2}\right)_{0} |\hat{\mu}| \left(\frac{3}{2}\frac{1}{2}\right)_{1} \right\rangle + \beta \left\langle \left(\frac{1}{2}\frac{1}{2}\right)_{0} |\hat{\mu}| \left(\frac{1}{2}\frac{1}{2}\right)_{1} \right\rangle + 0 (\alpha\beta)$$

$$= +\sqrt{20}\alpha - \sqrt{20}\beta = \sqrt{20} (\alpha - \beta); \qquad \beta = -\frac{2\sqrt{2}G_{1}}{\frac{2}{3}G_{1} + \frac{3}{2}\zeta}$$

5. Positronium is an atom-like system formed from an electron and a positron. Predict the energylevel pattern and the wavelengths of some of the electronic transitions of positronium.

Predict the wavelengths of some electronic transitions in positronium: The energy level pattern will be hydrogenic.

$E(\mu, n) \propto \frac{1}{\mu n^2}$; μ = reduced mass.
For $\mu \gg m_e$, $\mu = \frac{Mm_e}{M + m_e} \approx m_e$
For M = m _e , $\mu = \frac{m_e^2}{2m_e} = \frac{1}{2}m_e$
We can calculate the positronium energy levels by scaling the Rydberg Formula:
$\tilde{v}_{pos} = \frac{1}{2} R_{\infty} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) = 54839 \left(\frac{1}{n^2} - \frac{1}{m^2} \right) cm^{-1}$
$\frac{1}{\lambda} = 54839 \left(\frac{1}{n^2} - \frac{1}{m^2} \right); n = \text{principal quantum number of terminus state, } m > n.$
"Lyman" series: $\frac{1}{\lambda} = 54839 \left(1 - \frac{1}{m^2} \right) \text{cm}^{-1}; \qquad \lambda = 1823.5 \left(\frac{m^2}{m^2 - 1} \right) \text{\AA}$
"Balmer" series; $\frac{1}{\lambda} = 54839 \left(\frac{1}{4} - \frac{1}{m^2}\right) \text{cm}^{-1}; \lambda = 7294.1 \left(\frac{m^2}{m^2 - 4}\right) \text{\AA}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6. Without using microstates, derive the ground-state terms and energy levels for the transition elements of the third row (Sc through Zn) of the periodic table. (Remember Cr and Cu are exceptions to the regular Aufbau filling of electrons into orbitals.)

1)	Upped's first miles	atataa with th	ahighast	anin multin	lightry and	lowert in anonary
1)	HUNG S HISLTURE:	states with th	e nignesi	SDIN INUIUD	menty are	lowest in energy.
-)	110110 0 11100 10100	States with an		°p in monep	interest of the second	

2) Hund's second rule: for states with identical S, highest L is lowest in energy.

lement	<u>Config.</u>	Ground state	
Sc	s ² d	^{2}D	
Ti	$s^2 d^2$	${}^{3}F$	(L = 2 + 1)
V	s^2d^3	${}^{4}\mathrm{F}$	(L = 2 + 1 + 0)
Cr	sd ⁵	7 S	1/2 filled shell is particularly stable
Mn	s^2d^5	⁶ S	(L = 2 + 1 + 0 - 1 - 2 = 0)
Fe	$s^2 d^6$	⁵ D	(L = 2 - 1 + 0 + 1)
Co	s^2d^7	${}^{4}\mathrm{F}$	(like V)
Ni	s^2d^8	${}^{3}F$	(like Ti)
Cu	sd^{10}	2 S	full d shell is particularly stable
	<u>lement</u> Sc Ti V Cr Mn Fe Co Ni Cu	$\begin{array}{c c} \underline{lement} & \underline{Config.} \\ \hline Sc & s^2d \\ \hline Ti & s^2d^2 \\ V & s^2d^3 \\ \hline Cr & sd^5 \\ \hline Mn & s^2d^5 \\ \hline Fe & s^2d^6 \\ \hline Co & s^2d^7 \\ \hline Ni & s^2d^8 \\ \hline Cu & sd^{10} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

See Bernath, Chapter 5, pages 31 and 32.

7. (a) What are $\langle r \rangle$ and $\langle 1/r \rangle$ for the 1s orbital of hydrogen?

 $\langle r \rangle_{n\ell}$ and $\langle \frac{1}{r} \rangle_{n\ell}$ for Hydrogen. You can do the integrals yourself or look them up. See, for instance, Condon and Shortley, page 117.

$$\langle \mathbf{r} \rangle = \frac{\mathbf{a}_0}{2} \left[3\mathbf{n}^2 - \ell \left(\ell + 1 \right) \right]$$
$$\langle \mathbf{r} \rangle_{1s} = \frac{3}{2} \mathbf{a}_0$$
$$\left\langle \frac{1}{\mathbf{r}} \right\rangle = \frac{1}{\mathbf{a}_0} \frac{1}{\mathbf{n}^2}$$
$$\left\langle \frac{1}{\mathbf{r}} \right\rangle_{1s} = \frac{1}{\mathbf{a}_0}$$

(b) What is the transition dipole moment in debye for the $2p_z \leftarrow 1s$ transition of hydrogen? Calculate $\mu(2p \leftarrow 1s)$ $P = -er \cos \theta$ $\mu = \langle 2p | P(r, \theta) | 1s \rangle$ Using the equations and tables on page 132 and 133 of C & S $\mu = \frac{-1}{\sqrt{3}} [2^8 2^7 3^{-11}]^{1/2}$ 8. In the atomic spectrum of neutral Ca there is a normal multiplet of six lines at 0, 14, 36, 106, 120, and 158 cm⁻¹ above the lowest frequency line of the multiplet. What are the quantum numbers of the states involved in the transition?

Bernath, Chapter 5, #15

I first tried the problem very late at night and I found it completely intractable even though I knew it was easy. It seems much more straightforward at 11:00 AM. Check Lecture 8 notes, page 3 for insight.

A six line pattern is characteristic of a ${}^{3}D \leftarrow {}^{3}P$ transition. This is plausible for Ca, because Ca has two e^{-} outside of a closed 3p shell, [Ar].

Step 1: Numerology...

One can make some educated guesses based on the separations between observed lines.

$$\frac{36-14=22}{14-0=14} \left\{ \frac{22}{14} = 1.6 \approx \frac{3}{2} \right\}$$

This could be the signature of J = 3, 2, and 1 of a ³D state.

$$\frac{158 - 106 = 52}{106 - 0 = 106} \left\{ \frac{106}{52} = 2.0_4 \approx \frac{2}{1} \right\}$$

This could be the signature of J = 2, 1, 0 of a ³P state.

Assuming this is correct, are the ζ 's calculated plausible?

For the '³D', $3\zeta = 22 \text{ cm}^{-1}$, $2\zeta = 14 \text{ cm}^{-1}$ $\therefore \qquad \zeta_d \simeq 7.0 \text{ cm}^{-1}$.

For the '³P', $2\zeta = 106 \text{ cm}^{-1}$, $\zeta = 52 \text{ cm}^{-1}$ \therefore $\zeta_p \simeq 53 \text{ cm}^{-1}$.

This is reasonable, as ζ decreases with increasing ℓ . Also, ζ decreases with increasing n, so if the ³D state is on top, then this is even better.

Assume:

Transition	Line positi	on/cm ⁻¹								
${}^{3}D_{1} - {}^{3}P_{0}$	Х									
${}^{3}D_{2} - {}^{3}P_{1}$	x + 14 - 52	2 = x - 38								
${}^{3}D_{3} - {}^{3}P_{2}$	x + 36 – 13	x + 36 - 158 = x - 122								
${}^{3}D_{1} - {}^{3}P_{1}$	x – 52									
${}^{3}D_{2} - {}^{3}P_{2}$	x + 14 – 13	58 = x - 144								
${}^{3}D_{1} - {}^{3}P_{2}$	x – 158									
listing transitions 1	red	blue:								
x - 158	x − 144	x – 122	x - 52	x – 38	Х					

9. The following wavenumbers are listed in Moore's tables for the $n^2 P^\circ - 3^2 S$ transitions of Na:

п	J	Wavenumber (cm ⁻¹)
5	0.5	35,040.27
5	1.5	35,042.79
6	0.5	37,296.51
6	1.5	37,297.76
7	0.5	38,540.40
7	1.5	38,541.14
8	0.5	39,298.54
8	1.5	39,299.01
9	0.5	39,794.53
9	1.5	39,795.00
10	0.5 and 1.5	40,137.23

(a) Correct the line positions for the effect of spin-orbit coupling and determine ζ for each of the excited $n^2 P$ terms of Na.

Bernath, Eq. (5.97) $\langle \mathbf{H}^{so} \rangle = \zeta \langle L \cdot S \rangle$ $= \frac{1}{2} \zeta [J(J+1) - L(L+1) - S(S+1)]$ This is the np Rydberg series, so L = 1, $S = \frac{1}{2}$

$\langle \mathbf{H}^{\mathrm{so}} \rangle = \frac{1}{2}$	$\zeta \left[J(J+1) - \frac{11}{4} \right]$	
$E_{J+1} - E_J = \zeta$	$(J+1)$; $\zeta = \frac{2}{3}$	$\Delta E_{(J+1)-J}$
$\overline{\mathrm{E}}_{\mathrm{np}}$ is the de	egeneracy weighted aver	rage of $J = \frac{3}{2}$ and $J = \frac{1}{2}$:
$\Omega_{\frac{3}{2}} = 4$, $\Omega_{\frac{1}{2}} = 2$	$(\Omega_{J} \text{ are degeneracies})$
$4E_3$	$+2E_{1}$	
$\overline{\mathrm{E}}_{\mathrm{np}} = - \overline{2}$	$\frac{1}{2}$	
n	$\overline{\mathrm{E}}_{\mathrm{np}}/\mathrm{cm}^{-1}$	ζ_{np}/cm^{-1}
5	35041.95	1.12
6	37297.34	0.55
7	38540.89	0.33
8	39298.85	0.21
9	39794.84	0.21
10	40137.23	0.00
[Note: I've	defined $E(3^2S_{1/2}) = 0]$	

(b) Devise an extrapolation procedure to determine the ionization potential and the quantum defect for this Rydberg series.

Extrapolation of np Rydberg series to determine ionization potential.

The energies of the np orbitals can be fit to the following formula:

$$\overline{\mathrm{E}}_{\mathrm{np}} = \mathrm{IP} - \frac{\mathrm{R}}{\left(\mathrm{n} - \mu_{\mathrm{p}}\right)^2}$$

IP = Na Ionization Potential

R = Rydberg constant [109734.72 cm⁻¹ for Na]

 $\mu_{\rm p}$ = Quantum defect for the np series

I tried several different fits using the Field group's non-linear least squares fitting program. I

first tried a fit giving each \overline{E} equal statistical weight. The resultant fit had systematic residuals. This comes as no surprise, as the Rydberg formula is more accurate at high n. A second fit was done with the 5p, 6p, and 7p levels de-weighted. The uncertainty in the fitted value of the IP decreased considerably.

$$\frac{\text{Fit #1}}{\delta(\overline{E}_{np})} = 0.1 \text{ cm}^{-1} \qquad \qquad \frac{\text{Fit #2}}{\delta(\overline{E}_{np})} = \text{ large for low n}$$

Problem Set #2 ANSWERS

$IP = 41452.7(9) \text{ cm}^{-1}$	$IP = 41450.3(1) \text{ cm}^{-1}$
$\mu_{\rm p} = 0.8623(6)$	$\mu_{\rm p} = 0.8583(2)$

A better fit could be obtained by systematically de-weighting the lower np levels and by observing and including higher np levels.

The IP listed in Charlotte Moore's tables is 41449.65 cm⁻¹, over six standard deviations off from the value determined by fit #2.

Results of the two fits follow...

NUM	BER (OF D	ATA	POIN	TS: 6		FIT #1				
Na np	Na np quantum defect determination										
1 2 3	IP Ryd mu	IP 0. 0. 0.	NITIAL PARAMETERS).41451500D+05 cm ⁻¹).10973472D+06 cm ⁻¹).86070000D+00								
		0	UTP	UT FR	OM L	AST I	LSQ PASS				
FINAL NUMBER NAME VALUE 1 IP 0.41452684D+05 Ryd 0.10973472D+06 2 mu 0.86231148D+00					FINA VAI 52684 73472 31148	AL LUE D+05 D+06 D+00	S' D 0. 0.	$\begin{array}{c} \text{STANDARD} \\ \text{DEVIATION} \\ 0.9303D+00 \\ & \text{cm}^{-1} \\ 0.6148D-03 \end{array}$			
	OBS	SERV	/ED /	AND C	CALC	ULAT	ED TRANSI	FION FREQU	ENCIES		
Line 5p 6p 7p 8p 9p 10p	J' 0.0 1.0 2.0 3.0 4.0 5.0	RK 1 1 1 1 1 1 1	BK 2 2 2 2 2 2 2 2	J" 0.0 0.0 0.0 0.0 0.0 0.0	RK 1 1 1 1 1 1	BK 1 1 1 1 1 1	EXPT 35041.950 37297.340 38540.890 39298.850 39794.840 40137.230	CALC 35043.121 37295.412 38539.725 39298.768 39795.610 40138.454	EXPT-CALC -1.171 1.928 1.165 0.082 -0.770 -1.224	SD 0.100 0.100 0.100 0.100 0.100 0.100	units cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1}
									fit residual	uncertainty	
NUM No m	BER (OF D	ATA	POIN'	TS: 6		FIT #2			in E	
Na np 1 2 3	IP Ryd mu	tum c Ir 0. 0. 0.	NITIA 4145 1097 8607	1500D 3472D 0000D	ninatio RAME +05 +06 +00	on ETERS cm cm	5 -1 -1				
		0	UTP	UT FR	OM L	AST I	LSQ PASS				

NUMBER NAME]	FINA VAI	AL LUE	S D	TANDARD EVIATION					
	1	IF)	0.41450306D+05		0	.9915D–01	cm^{-1}			
	Ryd 2 mu		yd Iu	0.109).109/34/2D+06).85828733D+00		0	.2182D–03	cm ²		
OBSERVED AND CALCULATI		ED TRANSI	TION FREQU	JENCIES							
Line	J′	RK	BK	J‴	RK	BK	EXPT	CALC	EXPT-CALC	SD	units
5p	0.0	1	2	0.0	1	1	35041.950	35053.191	-11.241	15.000	cm^{-1}
6p	1.0	1	2	0.0	1	1	37297.340	37299.538	-2.198	5.000	cm^{-1}
7p	2.0	1	2	0.0	1	1	38540.890	38541.163	-0.273	1.000	cm^{-1}
8p	3.0	1	2	0.0	1	1	39298.850	39298.816	0.034	0.100	cm^{-1}
9p	4.0	1	2	0.0	1	1	39794.840	39794.869	-0.029	0.100	cm^{-1}
10p	5.0	1	2	0.0	1	1	40137.230	40137.233	-0.003	0.100	cm^{-1}

The spin-orbit operator for the hydrogen atom is

$$\widehat{\mathbf{H}}_{so} = \xi(\mathbf{r})\widehat{\ell}\cdot\widehat{\mathbf{s}}$$

$$\xi(\mathbf{r}) = \frac{1}{2\mu^{2}c^{2}}\frac{1}{\mathbf{r}}\frac{\partial V}{\partial \mathbf{r}}$$
Bernath (5.46)

$$= \frac{1}{2\mu^{2}c^{2}}\frac{Ze^{2}}{4\pi z_{0}r^{3}}$$

For np orbitals of H,

$$\zeta_{np} = \langle np | \xi(r) | np \rangle \propto n^{-3}$$

Alkalis, like Na, are nearly one-electron atoms like H, so we might expect ζ_{np} to scale similarly in Na; possibly as $n^{\star-3}$. The n^{\star} dependence of ζ_{np} can be determined by doing a log-log plot of ζ_{np} vs. n^{\star} .

Assume

$$\begin{split} \zeta_{np} &= A_p \left(n^{\star} \right)^{-k} \\ \ln \zeta_{np} &= \ln A_p - k \ln n^{\star} \end{split}$$

The 10p orbital cannot be included because the spin-orbit splitting is not resolved. I did one fit including the 9p and the other without it.

n* Dependence of Spin-Orbit Constant

10. On the basis of first-order perturbation theory, the hyperfine structure of the ground electronic state of the H atom involves the interaction of the spins of the electron and proton with one another, and with any applied magnetic fields. It is possible to integrate out the spatial coordinates and to consider the system as two spins S = I = 1/2 governed by the spin Hamiltonian

$$\widehat{H}_{spin} = \frac{b_F}{\hbar^2} \widehat{I} \cdot \widehat{S} + \frac{k_S}{\hbar} \widehat{S}_z + \frac{k_I}{\hbar} \widehat{I}_z \equiv \widehat{H}_{hfs} + \widehat{H}_{Zeeman},$$

in which b_F , k_S , and k_I are given by

$$b_{\rm F} = \frac{2\mu_0}{3} g_{\rm e} \mu_{\rm B} g_{\rm I} \mu_{\rm I} |\psi_{\rm Is}(0)|^2$$
$$k_{\rm S} = g_{\rm e} \mu_{\rm B} B_0$$
$$k_{\rm I} = -g_{\rm I} \mu_{\rm N} B_0$$

and g_e , g_I , μ_B , μ_N are the g-factors and magnetons for the electron and the proton. The spin Hamiltonian can be split into two parts, $b_F \hat{I} \cdot \hat{S} / \hbar^2$ [referred to as the hyperfine structure (hfs) Hamiltonian], and

 $(k_s \hat{S}_z + k_1 \hat{I}_z)/\hbar$ (referred to as the Zeeman Hamiltonian). SI units are used and $\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$ is the permeability of vacuum.

(a) Calculate the values of b_F , k_S , and k_I (the latter two as multiples of the field strength, B_0) for the hydrogen 1s state.

Calculate the values of
$$b_{p}$$
, k_{s} , and k_{1}
 $b_{p} = \frac{2}{3} \mu_{0} g_{e} \mu_{B} g_{1} \mu_{1} | \Psi_{1s}(0) |^{2}$
 $\mu_{0} = 4\pi \cdot 10^{-7} NA^{-2}$
 $\mu_{B} = 9.274 \cdot 10^{-24} JT^{-1}$
 $\mu_{N} = 5.051 \cdot 10^{-27} JT^{-1}$
 $g_{e} = 2.0023$
 $g_{1} = 5.5856$
 $\Psi_{1s}(r) = \frac{1}{\pi^{1/2}} \frac{1}{a_{0}^{3/2}} e^{-\frac{7}{a_{0}}}$; $|\Psi_{1s}(0)|^{2} = \frac{1}{\pi a_{0}^{3}}$
Unit check:
 $(NA^{-2})(Nm)^{2} (NA^{-1}m^{-1})^{-2} m^{-3} = Nm = J$
 $1.60210 \cdot 10^{-19} J = 8065.7 cm^{-1} \cdot 29979 MHz/cm^{-1}$
 $6.6257 \cdot 10^{-28} J = 1 MHz$
 $b_{p} = \frac{\frac{8}{3} \cdot 10^{-7} \cdot 2.0023 \cdot 9.274 \cdot 10^{-24} \cdot 5.5856 \cdot 5.051 \cdot 10^{-27} (0.529177 \cdot 10^{-10})^{-3}}{6.6257 \cdot 10^{-28}} MHz$
 $k_{1} = -g_{1}\mu_{N}B_{0}$
 $= \frac{-5.5856 \cdot 5.051 \cdot 10^{-27}}{6.6257 \cdot 10^{-28}} (B_{0} / Tesla) MHz$
 $k_{s} = g_{e}\mu_{B}B_{0}$
 $= \frac{2.0023 \cdot 9.274 \cdot 10^{-24}}{6.6257 \cdot 10^{-28}} (B_{0} / Tesla) MHz$
 $k_{s} = g_{e}\mu_{B}B_{0}$
 $= \frac{2.0023 \cdot 9.274 \cdot 10^{-24}}{6.6257 \cdot 10^{-28}} (B_{0} / Tesla) MHz$

(b) Now consider an isolated H atom (with no applied magnetic field). Show that the matrix of \hat{H}_{hfs} with respect to the $|m_sm_l\rangle$ basis is

$$\mathbf{H}_{\rm hfs} = \frac{\mathbf{b}_{\rm F}}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Find the energies and eigenstates in this basis and construct the matrix **X** that diagonalizes \mathbf{H}_{hfs} . What will be the eigenstates $|FM_F\rangle$ of \hat{H}_{hfs} expressed in terms of the $|m_sm_I\rangle$ states? Give a discussion of this in terms of vector coupling.

The eigenvectors of $\widehat{\boldsymbol{H}}_{hfs}$ are listed on the next page.

	[1	0	0	0]	
V	0	$2^{-1/2}$	$2^{-1/2}$	0	
$\mathbf{X}_{\tilde{z}} =$	0	$2^{-1/2}$	$-2^{1/2}$	0	
	0	0	0	1	

The eigenvalues of $\widehat{\mathbf{H}}_{hfs}$ are $-\frac{3}{4}\mathbf{b}_{F}$ and $\frac{1}{4}\mathbf{b}_{F}$. The triplet, F = 1, lies at higher energy. The splitting between the F = 0 and F = 1 levels is $\mathbf{b}_{F} = 1422.9$ MHz.

program matgen

```
integer r
double precision a(4,4), bf, ks, ki, h
write(5,*) 'Magnetic field? [Units of Tesla]'
read(5,*)h
bf = 1422.9
ki = -42.6 * h
ks = 28026*h
***
        |mI, mS >
***
        | 1/2, 1/2 >, | 1/2, -1/2 >, | -1/2, 1/2 >, | -1/2, -1/2 >
        a(1,1) = 0.25 \text{*bf} + 0.50 \text{*ki} + 0.50 \text{*ks}
        a(1,2) = 0.00d0
        a(1,3) = 0.00d0
        a(1,4) = 0.00d0
***
        a(2,1) = a(1,2)
        a(2,2) = -0.25 \text{*bf} + 0.50 \text{*ki} - 0.50 \text{*ks}
        a(2,3) = 0.50*bf
        a(2,4) = 0.00d0
***
        a(3,1) = a(1,3)
```

	a(3,2) = a(2,3) a(3,3) = -0.25*bf - 0.50*ki + 0.50*ks
	a(3,4) = 0.00d0

	a(4,1) = a(1,4)
	a(4,2) = a(2,4)
	a(4,3) = a(3,4)
	a(4,4) = 0.25 *bf - 0.50 *ki - 0.50 *ks
	write(5,110) 'Magnetic Field / Tesla = ',h
	open(file='matrix.dat', unit=2, status='unknown')
	do r = 1,4
	write(2,100) a(r,1), a(r,2), a(r,3), a(r,4)
	write(5,100) a(r,1), a(r,2), a(r,3), a(r,4)
	enddo
	close(2)
100	format(4f10.2)
110	format(a30,f6.3)

end

MATRIX BEFOR	E DIAGONALIZATIC	DN:		
Magnetic I	Field / Tesla = .000			
	$ 1\rangle$	$ 2\rangle$	3>	$ 4\rangle$
(1)	355.73000	.00000	.00000	.00000
(2)	.00000	-355.73000	711.45000	.00000
(3)	.00000	711.45000	-355.73000	.00000
(4)	.00000		.00000	355.73000
EIGENVALUES	& EIGENVECTORS:			
	# 1	# 2	# 3	# 4
Value:	-1067.1800	355.7200	355.7300	355.7300
Vector:				
(1)	.00000	.00000	1.00000	.00000
(2)	.70711	.70711	.00000	.00000
(3)	70711	.70711	.00000	.00000
(4)	.00000		.00000	1.00000
MATRIX BEFOR	E DIAGONALIZATIC	DN:		
Magnetic I	Field / Tesla = .001			
	$ 1\rangle$	$ 2\rangle$	3>	$ 4\rangle$
(1)	369.72000	.00000	.00000	.00000
(2)	.00000	-369.76000	711.45000	.00000
(3)	.00000	711.45000	-341.69000	.00000
(4)	.00000	.00000	.00000	341.7300

EIGENVALUES & EIGENVECTORS:

	# 1	# 2	# 3	# 4
Value:	-1067.3134	341.7300	355.8634	369.7200
Vector:				
(1)	.00000	.00000	.00000	1.00000
(2)	71405	.00000	.70010	.00000
(3)	.70010	.00000	.71405	.00000
(4)	.00000	1.00000	.00000	.00000

MATRIX BEFORE	DIAGONALIZATIC	N:			
Magnetic Fie	d / Tesla = .005				
	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$	$ 4\rangle$	
(1)	425.68000	.00000	.00000	.00000	
(2)	.00000	-425.90000	711.45000	.00000	
(3)	.00000	711.45000	-285.55000	.00000	
(4)	.00000	.00000	.00000	285.77000	
EIGENVALUES & EIGENVECTORS:					
	# 1	# 2	# 3	# 4	
Value:	-1070.6275	285.7700	359.1775	425.6800	
Vector:					
(1)	.00000	.00000	.00000	1.00000	
(2)	74100	.00000	.67151	.00000	
(3)	.67151	.00000	.74100	.00000	
(4)	.00000	1.00000	.00000	.00000	

In the absence of an external field, the spin of the proton and the electron spin are strongly coupled when anti-parallel.

(c) Determine (in terms of b_F , k_S , k_I) the matrices with elements $\langle m'_S m'_I | \hat{H}_{spin} | m''_S m''_I \rangle$ and

$\langle F'M'_F H_{spin} F''M''_F \rangle$ in the general case when an applied field, B_0 , is present.						
$ \mathbf{m}_{\mathrm{I}},\mathbf{m}_{\mathrm{I}} $	$ m_{s}\rangle \frac{1}{2}\frac{1}{2}\rangle$	$\left \frac{1}{2}-\frac{1}{2}\right\rangle$	$\left -\frac{1}{2}\frac{1}{2}\right\rangle$	$\left -\frac{1}{2}-\frac{1}{2}\right\rangle$		
	$\int \frac{1}{4} b_{\rm F} + \frac{1}{2} k_{\rm I} + \frac{1}{2} k_{\rm s}$	0	0	0 7		
и_	0	$\frac{1}{4}b_{F} + \frac{1}{2}k_{I} - \frac{1}{2}k_{s}$	$\frac{1}{2}b_{F}$	0		
n =	0	$\frac{1}{2}b_{F}$	$-\frac{1}{4}b_{F}^{}-\frac{1}{2}k_{I}^{}+\frac{1}{2}k_{s}^{}$	0		
	0	0	0	$\frac{1}{4}b_{F} - \frac{1}{2}k_{I} - \frac{1}{2}k_{s}$		

(d) From the results of part (c) show how the zero field $|FM_F\rangle$ levels split in a weak magnetic field. In this case it is necessary to treat the magnetic field as a perturbation, namely

$$\widehat{H}^{(0)} = \frac{b_{\rm F}}{\hbar^2} \widehat{I} \cdot \widehat{S}, \qquad \qquad \widehat{H}^{(1)} = \frac{k_{\rm S}}{\hbar} \widehat{S}_{\rm z} + \frac{k_{\rm I}}{\hbar} \widehat{I}.$$

Give a plot of the splitting of these levels as calculated earlier for fields, B_0 , from 0 to 0.2 T (put your energy scale in MHz).

See printouts of Fortran program on Athena and graph created, using program output, with 'Igor' on a Mac.

MATRIX BEFORE	DIAGONALIZATIO	ON:		
Magnetic Fie	ld / lesia = .100)		
	1>	$ 2\rangle$	3>	4>
(1)	1754.90000	.00000	.00000	.00000
(2)	.00000	-1759.16000	711.45000	.00000
(3)	.00000	711.45000	1047.70000	.00000
(4)	.00000	.00000	.00000	-1043.44000
EIGENVALUES & 1	EIGENVECTORS:			
	# 1	# 2	# 3	# 4
Value:	-1929.1902	-1043.4400	1217.7302	1754.9000
Vector:				
<1	.00000	.00000	.00000	1.00000
(2)	97261	.00000	.23244	.00000
(3)	.23244	.00000	.97261	.00000
(4)	.00000	1.00000	.00000	.00000
MATRIX BEFORE	DIAGONALIZATIO	DN:		
MATRIX BEFORE Magnetic Fie	DIAGONALIZATIO ld / Tesla = .010	DN:)		
MATRIX BEFORE Magnetic Fie	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$	DN:) 2>	3>	4>
MATRIX BEFORE Magnetic Fie	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000	DN:) 2> .00000	3> .00000	4⟩ .00000
MATRIX BEFORE Magnetic Fie	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000	DN:) 2⟩ .00000 -496.07000	3⟩ .00000 711.45000	4⟩ .00000 .00000
MATRIX BEFORE Magnetic Fie (1) (2) (3)	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000	DN:) 2) .00000 -496.07000 711.45000	3⟩ .00000 711.45000 -215.38000	4⟩ .00000 .00000 .00000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4)	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000 .00000	DN:) 2) .00000 -496.07000 711.45000 .00000	3⟩ .00000 711.45000 -215.38000 .00000	4⟩ .00000 .00000 .00000 215.81000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & 1	DIAGONALIZATIO $ 1\rangle$ (10) $ 1\rangle$ $ 1\rangle$ 495.64000 .00000 .00000 .00000 .00000 EIGENVECTORS:	DN:) 2) .00000 -496.07000 711.45000 .00000	3⟩ .00000 711.45000 -215.38000 .00000	4⟩ .00000 .00000 .00000 215.81000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & 1	DIAGONALIZATIO d Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000 EIGENVECTORS: # 1	DN:) 2⟩ .00000 -496.07000 711.45000 .00000 # 2	3⟩ .00000 711.45000 -215.38000 .00000 # 3	4⟩ .00000 .00000 .00000 215.81000 # 4
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & 1 Value:	DIAGONALIZATIO $ 1\rangle$ (10) $ 1\rangle$ $ 1\rangle$ 495.64000 .00000 .00000 .00000 EIGENVECTORS: # 1 -1080.8855	DN:) 2) .00000 -496.07000 711.45000 .00000 # 2 215.8100	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355	4⟩ .00000 .00000 .00000 215.81000 # 4 495.6400
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & Value: Value: Vector:	DIAGONALIZATIO $ 1\rangle$ (10) $ 1\rangle$ (10)	DN: $ 2\rangle$.00000 -496.07000 711.45000 .00000 # 2 215.8100	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355	4⟩ .00000 .00000 .00000 215.81000 # 4 495.6400
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & 1 Value: Vector: (1)	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000 EIGENVECTORS: # 1 -1080.8855 .00000	DN:) 2) .00000 -496.07000 711.45000 .00000 # 2 215.8100 .00000	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355 .00000	4⟩ .00000 .00000 .00000 215.81000 # 4 495.6400 1.00000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & Value: Vector: (1) (2)	DIAGONALIZATIO $ 1\rangle$ 495.64000 .00000 .00000 EIGENVECTORS: # 1 -1080.8855 .00000 77251	DN:) 2⟩ .00000 -496.07000 711.45000 .00000 # 2 215.8100 .00000 .00000	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355 .00000 .63501	4⟩ .00000 .00000 215.81000 # 4 495.6400 1.00000 .00000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & 1 Value: Vector: (1) (2) (3)	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000 EIGENVECTORS: # 1 -1080.8855 .00000 77251 .63501	DN:) 2) .00000 -496.07000 711.45000 .00000 # 2 215.8100 .00000 .00000 .00000 .00000	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355 .00000 .63501 .77251	4⟩ .00000 .00000 215.81000 # 4 495.6400 1.00000 .00000 .00000
MATRIX BEFORE Magnetic Fie (1) (2) (3) (4) EIGENVALUES & D Value: Vector: (1) (2) (3) (4)	DIAGONALIZATIO ld / Tesla = .010 $ 1\rangle$ 495.64000 .00000 .00000 EIGENVECTORS: # 1 -1080.8855 .00000 77251 .63501 .00000	DN:) 2) .00000 -496.07000 711.45000 .00000 # 2 215.8100 .00000 .00000 .00000 .00000 1.00000	3) .00000 711.45000 -215.38000 .00000 # 3 369.4355 .00000 .63501 .77251 .00000	4⟩ .00000 .00000 215.81000 # 4 495.6400 1.00000 .00000 .00000 .00000

Notice that at 0.2 Tesla (2000 Gauss) \vec{I} and \vec{s} are almost entirely decoupled.

MATRIX BEFORE D	DIAGONALIZATIO	ON:		
Magnetic Field	d / Tesla = .200)		
	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$	$ 4\rangle$
(1)	3154.07000	.00000	.00000	.00000
(2)	.00000	-3162.59000	711.45000	.00000
(3)	.00000	711.45000	2451.13000	.00000
<4 	.00000	.00000	.00000	-2442.61000
EIGENVALUES & E	IGENVECTORS:			
	# 1	# 2	# 3	# 4
Value:	-3251.3516	-2442.6100	2539.8916	3154.0700
Vector:				
(1)	.00000	.00000	.00000	1.00000
(2)	99231	.00000	.12380	.00000
(3)	.12380	.00000	.99231	.00000
(4)	.00000	1.00000	.00000	.00000

Hydrogen 1s Levels in a Magnetic Field

(e) Determine the energy levels in a strong magnetic field of 1 T, regarding the hyperfine interaction as a small perturbation, that is,

$$\widehat{\mathbf{H}}^{(0)} = \frac{\mathbf{k}_{\mathrm{S}}}{\hbar} \widehat{\mathbf{S}}_{\mathrm{z}} + \frac{\mathbf{k}_{\mathrm{I}}}{\hbar} \widehat{\mathbf{I}}_{\mathrm{z}}, \quad \widehat{\mathbf{H}}^{(1)} = \frac{\mathbf{b}_{\mathrm{F}}}{\hbar^{2}} \widehat{\mathbf{I}} \cdot \widehat{\mathbf{S}}.$$

In this case show explicitly that the first-order perturbation spin functions are

$$\begin{split} \psi_1^{(1)} &= \phi_1^{(0)}, \qquad \psi_4^{(1)} = \phi_4^{(0)}, \\ \psi_2^{(1)} &= \phi_2^{(0)} + \frac{b_F}{2 \left(g_e \mu_B B_0 + g_I \mu_N B_0 \right)} \phi_3^{(0)}, \\ \psi_3^{(1)} &= \phi_3^{(0)} - \frac{b_F}{2 \left(g_e \mu_B B_0 + g_I \mu_N B_0 \right)} \phi_2^{(0)}, \end{split}$$

while the second-order energies corresponding to these four functions are

$$\begin{split} \mathbf{E}_{1} &= \frac{1}{2} \mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} - \frac{1}{2} \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} + \frac{1}{4} \mathbf{b}_{F}, \\ \mathbf{E}_{2} &= \frac{1}{2} \mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} + \frac{1}{2} \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} - \frac{1}{4} \mathbf{b}_{F} + \frac{\mathbf{b}_{F}^{2}}{4 \left(\mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} + \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} \right)}, \\ \mathbf{E}_{3} &= -\frac{1}{2} \mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} - \frac{1}{2} \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} - \frac{1}{4} \mathbf{b}_{F} - \frac{\mathbf{b}_{F}^{2}}{4 \left(\mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} + \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} \right)}, \\ \mathbf{E}_{4} &= -\frac{1}{2} \mathbf{g}_{e} \mu_{B} \mathbf{B}_{0} + \frac{1}{2} \mathbf{g}_{I} \mu_{N} \mathbf{B}_{0} + \frac{1}{4} \mathbf{b}_{F}. \end{split}$$

The electron spin resonance (ESR) spectrum for the hydrogen atoms has only *two* equally intense lines, because the magnetic moment of the proton is too small to contribute to the intensity, and because the mixing of the $|m_sm_I\rangle$ states in the strong field is small. Show explicitly with numerical results that this is indeed the case for the problem that you are considering. Calculate the splitting of the two ESR lines in MHz, and compare your result with the experimentally observed value of 1420.4 MHz. What is the corresponding wavelength? How could you use this calculation to substantiate the existence of interstellar clouds of atomic hydrogen?

$|m_s, m_l\rangle$

$$|1\rangle = \left|\frac{1}{2}\frac{1}{2}\right\rangle$$
$$E_{1}^{0} = \frac{1}{2}(k_{s} + k_{I}) = \frac{1}{2}B_{0}(g_{e}\mu_{B} - g_{I}\mu_{N})$$

$$\begin{split} |2\rangle &= \left|\frac{1}{2} - \frac{1}{2}\right\rangle \\ E_{2}^{0} &= \frac{1}{2}(k_{s} - k_{1}) = \frac{1}{2}B_{0}\left(g_{e}\mu_{B} + g_{1}\mu_{N}\right) \\ |3\rangle &= \left|-\frac{1}{2}\frac{1}{2}\right\rangle \\ E_{3}^{0} &= -\frac{1}{2}(k_{s} - k_{1}) = -\frac{1}{2}B_{0}\left(g_{e}\mu_{B} + g_{1}\mu_{N}\right) \\ |4\rangle &= \left|-\frac{1}{2} - \frac{1}{2}\right\rangle \\ E_{4}^{0} &= -\frac{1}{2}(k_{s} + k_{1}) = -\frac{1}{2}B_{0}\left(g_{e}\mu_{B} - g_{1}\mu_{N}\right) \\ E_{2}^{0} - E_{3}^{0} &= B_{0}\left(g_{e}\mu_{B} + g_{1}\mu_{N}\right) \\ H_{23}^{(1)} &= \frac{1}{2}b_{F} \\ &= H_{32}^{(1)} \qquad \text{all other } H_{ij}^{(1)} = 0 \\ &= H_{32}^{(1)} \qquad |\psi_{i}\rangle = |\psi_{i}\rangle^{\circ} + \sum_{j\neq i}\frac{H_{ij}}{E_{i}^{\circ} - E_{j}^{\circ}}|\psi_{j}\rangle^{\circ} \\ |1\rangle &= |1\rangle^{\circ} \\ |2\rangle &= |2\rangle^{\circ} + \frac{b_{F}}{2B_{0}\left(g_{e}\mu_{B} + g_{1}\mu_{N}\right)}|3\rangle^{\circ} \end{split}$$

$$|3\rangle = |3\rangle^{\circ} - \frac{b_{F}}{2B_{0}(g_{e}\mu_{B} + g_{I}\mu_{N})}|2\rangle^{\circ}$$
$$|4\rangle = |4\rangle^{\circ}$$

$$\begin{split} \mathbf{E}_{1} &= \mathbf{E}_{1}^{(0)} + \mathbf{H}_{11}^{(1)} \quad ; \qquad \qquad \mathbf{H}_{ij}^{(1)} \text{ are the elements of } \widehat{\mathbf{H}}_{hfs} \text{ given in part b}) \\ &= \frac{1}{2} \mathbf{B}_{0} \left(\mathbf{g}_{e} \mu_{B} - \mathbf{g}_{I} \mu_{N} \right) + \frac{1}{4} \mathbf{b}_{F} \\ \\ \mathbf{E}_{2} &= \mathbf{E}_{2}^{(0)} + \mathbf{H}_{22}^{(1)} + \frac{\left[\mathbf{H}_{23}^{(1)} \right]^{2}}{\mathbf{E}_{2}^{\circ} - \mathbf{E}_{3}^{\circ}} \end{split}$$

$$=\frac{1}{2}B_{0}(g_{e}\mu_{B}+g_{I}\mu_{N})-\frac{1}{4}b_{F}+\frac{b_{F}^{2}}{4B_{0}(g_{e}\mu_{B}+g_{I}\mu_{N})}$$

$$E_{3} = E_{3}^{(0)} + H_{33}^{(1)} + \frac{\left[H_{32}^{(1)}\right]^{2}}{E_{3}^{\circ} - E_{2}^{\circ}}$$

= $-\frac{1}{2}B_{0}\left(g_{e}\mu_{B} + g_{I}\mu_{N}\right) - \frac{1}{4}b_{F} - \frac{b_{F}^{2}}{4B_{0}\left(g_{e}\mu_{B} + g_{I}\mu_{N}\right)}$

$$E_{4} = E_{4}^{(0)} + H_{44}^{(1)}$$

= $-\frac{1}{2}B_{0}(g_{e}\mu_{B} - g_{I}\mu_{N}) + \frac{1}{4}b_{F}$

The calculated position of the F = 0 \rightarrow F = 1 transition is b_F = 1422.9 MHz.

The transitions are from $|3\rangle \rightarrow |1\rangle$ and $|4\rangle \rightarrow |2\rangle$.

$$\begin{split} \tilde{v}_{1} &= E_{1} - E_{3} = \frac{1}{2} B_{0} \left(g_{e} \mu_{B} - g_{I} \mu_{N} \right) + \frac{1}{2} B_{0} \left(g_{e} \mu_{B} + g_{I} \mu_{N} \right) + \frac{1}{2} b_{F} + \frac{b_{F}^{2}}{4 B_{0} \left(g_{e} \mu_{B} + g_{I} \mu_{N} \right)} \\ \tilde{v}_{2} &= E_{2} - E_{4} = \frac{1}{2} B_{0} \left(g_{e} \mu_{B} + g_{I} \mu_{N} \right) - \frac{1}{4} b_{F} + \frac{b_{F}^{2}}{4 B_{0} \left(g_{e} \mu_{B} + g_{I} \mu_{N} \right)} \\ &+ \frac{1}{2} B_{0} \left(g_{e} \mu_{B} - g_{I} \mu_{N} \right) - \frac{1}{4} b_{F} \end{split}$$

Splitting =
$$\Delta \tilde{v} = (E_1 - E_3) - (E_2 - E_4) = \frac{1}{2}b_F - (-\frac{1}{2}b_F) = b_F = 1422.9$$
 MHz.

v = 1422.9 MHz = 1.4229 GHz = 1.4229
$$\cdot 10^{9} \, \text{s}^{-1}$$

 $\lambda = [1.4229 \cdot 10^{9} \, \text{s}^{-1} / 2.9979 \cdot 10^{10} \, \text{ cm s}^{-1}]^{-1} = 21.07 \, \text{ cm}.$

At zero field, one observes a single line, $F = 0 \rightarrow F = 1$. In the presence of a modest B field, the line will split and the doublet will shift to the blue (doublet will be seen in a range of a few to a few tens of GHz). The observed splitting of the doublet will change depending upon whether the interstellar cloud is moving towards or away from us, and this is due to the Doppler shift.