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7. OBSERVING FLUCTUATIONS IN SPECTROSCOPY1 

Here we will address how fluctuations are observed in spectroscopy and how dephasing 

influences the absorption lineshape. Our approach will be to calculate a dipole correlation 

function for a dipole interacting with a fluctuating environment, and show how the time scale 

and amplitude of fluctuations are encoded in the lineshape. Although the description here is for 

the case of a spectroscopic observable, the approach can be applied to any such problems in 

which the deterministic motions of an object under an external potential are modulated by a 

random force.  

We also aim to establish a connection between this picture and the Displaced Harmonic 

Oscillator model. Specifically, we will show that a frequency-domain representation of the 

coupling between a transition and a continuous distribution of harmonic modes is equivalent to a 

time-domain picture in which the transition energy gap fluctuates about an average frequency 

with a statistical time-scale and amplitude given by the distribution coupled modes.  

7.1. FLUCTUATIONS AND RANDOMNESS: SOME DEFINITIONS2 

“Fluctuations” is my word for the time-evolution of a randomly modulated system at or near 

equilibrium. You are observing an internal variable to a system under the influence of thermal 

agitation of the surroundings. Such processes are also commonly referred to as stochastic. A 

stochastic equation of motion is one in which there is both a deterministic and a random 

component to the time-development.   

Randomness is a characteristic of all physical systems to a certain degree, even if the 

equations of motion that govern them are totally deterministic.  This is because we generally 

have imperfect knowledge about all of the degrees of freedom for the system.  This is the case 

when we look at a subset of particles which are under the influence of others that we have 

imperfect knowledge of. The result is that we may observe random fluctuations in our 

observables. This is always the case in condensed phase problems.  It’s unreasonable to think 

that you will come up with an equation of motion for the internal determinate variable, but we 

should be able to understand the behavior statistically and come up with equations of motion for 

probability distributions 

1 For readings on this topic see: Nitzan, A. Chemical Dynamics in Condensed Phases (Oxford University 
Press, New York, 2006), Chapter 7; C.H. Wang, Spectroscopy of Condensed Media: Dynamics of 
Molecular Interactions, Academic Press, Orlando, 1985.  

2 Nitzan, Ch. 1.5 and Ch. 7. 
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When we introduced correlation functions, we discussed the idea that a statistical 

description of a system is commonly formulated in terms of probability distribution functions P. 

Observables are commonly described by moments of a variable obtained by integrating over P, 

for instance 

x = ∫ dx x Ρ( x) 
(7.1)

2x = dx x2 Ρ x∫ ( )  

For time-dependent processes, we use a time-dependent probability distribution 

x (t ) = ∫ dx x t( ) Ρ ( x t, ) 
. (7.2) 

x t = dx x t Ρ x t, 2 ( )  ∫ 2 ( ) (  )  

Correlation functions go a step further and depend on joint probability distributions Ρ( ′′, ; ′ Bt A t  , ) 

that give the probability of observing a value of A at time t” and a value of B at time t’: 

A t( )  ( )B t′′ ′ = dA dB A B Ρ(t ′, ; ,  B)∫ ∫ ′ A t′ . (7.3) 

Random fluctuations are also described through a time-dependent probability 

distribution, for which we need an equation of motion. A common example of such a process is 

Brownian motion, the fluctuating position of a particle under the influence of a thermal 

environment. It’s not practical to describe the absolute position 

of the particle, but we can formulate an equation of motion for 

the probability of finding the particle in time and space given 

that you know its initial position. This probability density obeys 

the well known diffusion equation, here written in one 

dimension: 
2∂Ρ( x t, )

= D ∂
Ρ x t, (7.4)( )

∂t ∂x2 

Here D is the diffusion constant which sets the time-scale and spatial extent of the random 

motion. Note the similarity of this equation to the time-dependent Schrödinger equation for a 

free particle if D is taken as imaginary. Given the initial condition Ρ( x, t0 ) = δ ( x − x0 ) , the 

solution is a conditional probability density 

0Ρ( x t, x , t ) = 
2π

1 
Dt 

exp⎜
⎜
⎝

⎛
−

( x x  
4 
− 

Dt 
)2 

⎟
⎟
⎠

⎞ 
(7.5)0 0 
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The probability distribution describes the statistics for 

fluctuations in the position of a particle averaged over 

many trajectories. Analyzing the moments of this 

probability density in eq. (7.2) we find that  

x = 0 
(7.6)

2x = 2Dt 

So, the distribution maintains a Gaussian shape centered at x0 , and broadening with time as 2Dt. 

Brownian motion is an example of a Gaussian-Markovian process. Here Gaussian refers 

to cases in which we describe the probability distribution for a variable ( ) as a GaussianΡ x

normal distribution.  Here in one dimension: 

( ) = A e  (x x0 )
2 /2Δ2

Ρ x − − 

(7.7)
22 2Δ =  x − x 

The Gaussian distribution is important, because the central limit theorem states that the 

distribution of a continuous random variable with finite variance will follow the Gaussian 

distribution. Gaussian distributions also are completely defined in terms of their first and second 

moments, meaning that a time-dependent probability density P(x,t) is uniquely characterized by a 

mean value in the observable variable x and a correlation function that describes the fluctuations 

in x. Gaussian distributions for systems at thermal equilibrium are also important for the 

relationship between Gaussian distributions and parabolic free energy surfaces:   

( ) = −kT  ( x) (7.8)G x  ln Ρ

If the probability density is Gaussian along x, then the system’s free energy projected along this 

coordinate (often referred to as a potential of mean 

force) has a harmonic shape. Thus Gaussian 

statistics are effective for describing fluctuations 

about an equilibrium mean value x0 . 

Markovian means that, given the knowledge of the state of the system at time t1 , you can 

exactly describe P for a later time t2 . That is, the system has no memory of the behavior at an 

earlier time t0 . 
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( x, t x t x, t ) = Ρ  x, ; , t )Ρ ( x, ;Ρ ; , ;  ( t x t x, t )2 1 0 2 1 1 2 

Ρ( ; ;  ) = Ρ  t t  ) (  ; 
(7.9)

t t t  ( ; Ρ t t  )2 1 0  2 1  1 0  

Markovian therefore refers to a timescale long compared to correlation time for the internal 

variable that you care about.  For instance, the diffusion equation only holds after the particle has 

experienced sufficient collisions with its surroundings that it has no memory of its earlier 

position and momentum: t >τ c . 
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7.2. FLUCTUATIONS IN SPECTROSCOPY: SPECTRAL DIFFUSION 
To begin our discussion about how fluctuations manifest themselves in spectroscopy, let’s 

discuss their influence on the transition energy gap ωeg for the absorption lineshape. Consider the 

two limiting cases of line broadening:   

Homogeneous: 	 Here, the absorption lineshape is dynamically broadened by 

rapid variations in the amplitude, phase, or orientation of 

dipoles. Pure dephasing, lifetime, and rotation all contribute to 

an exponential decay time T2 . For our current discussion, let’s 

only concentrate on pure-dephasing T2
*  from rapid fluctuations 

in ωeg. 

Inhomogeneous: 	 In this limit, the lineshape reflects a static distribution of 

resonance frequencies, and the width of the line represents 

the distribution of frequencies, which arise, for instance, 

from different structural environments.   

Spectral Diffusion 

More generally, every system lies between these limits. 

Imagine every molecule having a different 

“instantaneous frequency” ω t  which evolves ini ( )  
time. This process is known as spectral diffusion. The 

homogeneous and inhomogeneous limits can be 

described as limiting forms for the fluctuations of a 

frequency i ( ) through a distribution of frequencies Δω t . 

If i ( ) evolves rapidly relative to Δ-1, the system is homogeneously broadened. If ω t evolves ω t i ( )  
slowly the system is inhomogeneous.  This behavior can be quantified through the transition 

frequency time-correlation function Ceg (t ) = ωeg (t )ωeg (0) . Our job will be to relate the 

behavior of C t  with the correlation function that determined the lineshape, C ( ) .eg( ) 	 μμ t 
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 Time-domain behavior C t = ωeg ( )  t ωeg (0)eg ( )  

“Motionally 
narrowed” 

Static 
distribution 
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7.3. GAUSSIAN-STOCHASTIC MODEL FOR SPECTRAL DIFFUSION 

We will begin with a classical description of how random fluctuations in frequency influence the 

absorption lineshape, by calculating the dipole correlation function for the resonant transition. 

This is a Gaussian stochastic model 

for fluctuations, meaning that we 

will describe the time-dependence of 

the transition energy as random 

fluctuations about an average value 

with a Gaussian statistics.   

ω (t ) = ω +δω  (t ) (7.10) 

δω (t ) = 0 (7.11) 

The fluctuations in ω allow the system to explore a Gaussian distribution of transitions 

frequencies characterized by a variance: 

Δ =  δω 2 1/2 
. (7.12) 

Furthermore, we will describe the time scale of the random fluctuations through a correlation 

time:   

1 ∞
τ c = Δ2 ∫0 

dt δω  0 . (7.13) 

Let’s treat the dipole moment as a classical internal variable to the system, whose time 

dependence arises from a linear relationship to the frequency fluctuations ( )  

δω  ( )t ( )  

ω t 

∂μ i t( ) μ (7.14)= − ω 
∂t 

Although it is a classical equation, note the similarity to the quantum Heisenberg equation for the 

dipole operator: μ t ⎡⎣ H t∂ ∂ =  i H t  ( ) μ  μ  − ( )⎦⎤ / h . This offers some insight into how the quantum 

version of this problem will look. The solution to eq. (7.14) is 

μ t = μ 0 exp  ⎡ i dτ ω τ  ⎤ (7.15) 

Substituting eq. (7.10) we have  

( )  ( )  ⎢⎣
− ∫0 

t 
(  )  ⎥⎦ 

μ ( )  μ (  )  ⎡
⎢⎣
−it = 0 exp  ω t − i∫0 

t
dτ δω τ  ( )⎥⎦

⎤ . (7.16) 
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Now to evaluate the dipole correlation function we have to perform an average over an 

equilibrium system. 

C ( ) =t μ ( )t ( )μ 0 = 0 
2 

exp ⎡⎢−i ω t − i∫0 

t
d ( )⎥⎦

⎤τ δω τ (7.17)μ ( )μμ ⎣ 

or making the Condon approximation 
2 −i ω t F ( )t (7.18)t μ eC ( ) =μμ 

where F t( ) = . (7.19)exp ⎡⎢⎣
−i∫0 

t
dτ δω τ  ( ) ⎤⎥⎦ 

The dephasing function here is obtained by performing an equilibrium average of the exponential 

argument over fluctuating trajectories. For ergodic systems, this is equivalent to averaging long 

enough over a single trajectory. 

The dephasing function is a bit of a complicated to work with as written. However, for 

the case of Gaussian statistics for the fluctuations, it is possible to simplify F t( ) by expanding it 

as a cumulant expansion of averages  (see Appendix) 

⎡ t i2 t t ⎤( ) = exp ⎢
⎣
−i∫0 

τ δω τ  +K⎥ (7.20)
⎦ 

F t  d  ′ + 
2! ∫0 

dτ ′∫0 
dτ  δω τ δω τ  ′′ ( )′ ( ) ′′( ) ′ 

In this expression the first term is zero, and only the second term survives for a system with 

Gaussian statistics. We have re-written the dephasing function in terms of a correlation function 

that describes the fluctuating energy gap. Note that this is a classical description, so there is no 

time-ordering to the exponential. Now recognizing that we have a stationary system, we have 

⎤( ) = exp − dτ ′ d ′′F t  ⎡
⎢⎣ 

1
2 ∫ ∫0 

t 

0 

t 
τ δω τ ′ −τ δω ′) 0 ⎥ (7.21)( ′ ( )

⎦ 

F ( ) τ τ ′′t  can be rewritten through a change of variables (τ = ′ − ): 

F t  ⎡
⎢⎣ ∫0 

t 
τ t )( ) = exp − d ( −τ δω τ δω ( ) ( )0 ⎤ (7.22)⎥⎦ 

So the Gaussian stochastic model allows the influence of the frequency fluctuations on the 

lineshape to be described by a frequency correlation function that follows Gaussian statistics. 

Cδωδω (t ) = δω (t )δω (0) (7.23) 

Note we are now dealing with two different correlation functions Cδωδω and Cμμ . 
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Now, we will calculate the lineshape assuming that Cδωδω  takes on an exponential form 

Cδωδω (t ) = Δ2 exp[−t /τ c ] (7.24) 

Then eq. (7.22) gives 
2 2F t( ) = exp ⎣⎡−Δ  τ c (exp (−t /τ c ) + t /τ c −1)⎤⎦ . 	(7.25) 

Or given F t( ) = exp (−g t  ( )) 
2 2g t( ) = Δ τ c (exp (−t /τ c ) + t /τ c −1)	 (7.26) 

Let’s look at the limiting forms of g t( ) : 

1) 	 Long correlation times (or short t): t <<τ c . This corresponds to the inhomogeneous 

case where Cδωδω ( )  2 For <<τ ct = Δ  , a constant. t  we can perform a short time 

expansion of exponential 

e−t /τc ≈1− t /τ c + 
t 2

2 +K	 (7.27)
2τ c 

and from eq. (7.26) we obtain  

2 2 / 2 
g t( ) = Δ  t  (7.28) 

At short times, our dipole correlation function will have a Gaussian decay with a rate 
2 2given by Δ2: F t( ) = exp (−Δ  t / 2 ) . This has the proper behavior for a classical 

correlation function, i.e. even in time Cμμ (t ) = Cμμ (−t ) . 

In this limit, the absorption lineshape is:  

2 +∞ ω −i ω t  g t  − ( )∫−∞	

i tσ ω  μ  dt e e( ) = 

2 +∞	 i(ω ω− 
= μ ∫−∞ 

dte )t e−Δ2 2t	 /2 (7.29) 

ω )2 ⎞
⎟= π μ 2 exp 

⎛
⎜ −

(ω − 

⎜ 2 Δ2 ⎟
⎝ ⎠ 

We obtain a Gaussian inhomogeneous lineshape centered at the mean frequency with a 

width dictated by the frequency distribution. 
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2) Very short correlation times: t >>τ c . This corresponds to the homogeneous limit in 

cwhich you can approximate Cδωδω (t ) = Δ2δ (t ) . For t >>τ c we set e−t /τ ≈ 0 , t /τ c >> 1 

and eq. (7.26) gives 

g t( ) = −Δ  2τ c t (7.30) 

If we define the constant 

Δ2τ ≡ Γ =
1 (7.31)c T2 

we see that the dephasing function has an exponential decay! 

F (t ) = exp[−t T  / 2 ] (7.32) 

The lineshape for very short correlation times (or very fast fluctuations) takes on a 

Lorentzian shape 

2 +∞ i(ω ω− )t e−t T/ 2σ ω  μ  ∫−∞ 
dt e( ) = 

( )  1 (7.33)Reσ ω ∝ 
(ω − ω )2 

− 
T 
1

2 
2 

This represents the homogeneous limit! Even with a broad distribution of accessible 

frequencies, if the system explores all of these frequencies on a time scale fast compared 

to the inverse of the distribution (Δ τc > 1), then the resonance will be “motionally 

narrowed” into a Lorentzian line.    

General Behavior 

More generally, the envelope of the dipole 
Gaussian 

exponential correlation function will look Gaussian at 

short times and exponential at long times. 

The correlation time is the separation F t( )
between these regimes. The behavior for 

varying time scales of the dynamics (τc) are 

best characterized with respect to the t 
τ

distribution of accessible frequencies (Δ). So c 
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we can define a factor 

κ = Δ ⋅τ c (7.34) 

κ<<1 is the fast modulation limit and κ>>1 is the slow modulation limit.  Let’s look at how 

F t  , andσ ω  change as a function of κ.Cδωδω , ( ) abs ( )  
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We see that for a fixed distribution of frequencies Δ the effect of increasing the time scale of 

fluctuations through this distribution (decreasing τc) is to gradually narrow the observed 

lineshape from a Gaussian distribution of static frequencies with width (FWHM) of 2.35·Δ to a 

motionally narrowed Lorentzian lineshape with width (FWHM) of Δ2τ c π = Δ ⋅  κ  π  . 

This is analogous to the motional narrowing effect first described in the case of 

temperature dependent NMR spectra of two exchanging species. Assume we have two 

resonances at ωA and ωB associated with two chemical species that are exchanging at a rate kAB 

kABA ⎯⎯→ B←⎯⎯ kBA 

If the rate of exchange is slow relative to the frequency splitting, kAB << ωA−ωB, then we expect 

two resonances, each with a linewidth dictated by the molecular relaxation processes (Τ2) and 

transfer rate of each species. On the other hand, when the rate of exchange between the two 

species becomes faster than the energy splitting, then the two resonances narrow together to form 

one resonance at the mean frequency.3 

Anderson, P. W. A mathematical model for the narrowing of spectral lines by exchange or motion. J. 
Phys. Soc. Japan 9, 316 (1954).; Kubo, R. in Fluctuation, Relaxation, and Resonance in Magnetic 
Systems (ed. Ter Haar, D.) (Oliver and Boyd, London, 1962). 

3 
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7.4. APPENDIX: THE CUMULANT EXPANSION 

For a statistical description of the random variable x, we wish to characterize the moments of  x: 
2x , x ,K     Then the average of an exponential in x can be expressed as an expansion in 

moments  

= ∑
ik∞ ( )n 

ikx xne (7.35) 
0 n! 

An alternate way of expressing this expansion is in terms of cumulants cn(x) 

n= 

ikxe = exp 
⎛
∑

∞ ( )ik n

cn ( )⎟
⎞ 

, (7.36)⎜ x
⎜ n! ⎟
⎝ n=1 ⎠ 

where the first few cumulants are:   

1 ( ) = xc x  mean (7.37) 

22c x  x  − x variance (7.38)2 ( ) = 

33 2c x  = x − 3 x x + 2 x skewness (7.39) 

An expansion in cumulants converges much more rapidly than an expansion in moments, 

particularly when you consider that x may be a time-dependent variable.  For a system that obeys 

Gaussian statistics, all cumulants with n > 2 vanish! 

We obtain the cumulants above by comparing terms in powers of x in eq. (7.35) and 

(7.36). We start by postulating that instead of expanding the exponential directly, we can instead 

expand the exponential argument in powers of an operator or variable H 

F = exp[c] = +  +  c 1 c2 +L  (7.40) 

3 ( )  

1 2 

c c H  = 1 + 1
2 2 

2 +Lc H  (7.41) 

Inserting eq. (7.41) into eq. (7.40) and collecting terms in orders of H gives 

F = +1 (c H  + 1 c H  2 +L) + 1 (c H  + 1 c H  2 +L)2 
+L1 2 2 2 1 2 2 

1 2 2= +1 ( )c H  + ( 2 + c 
(7.42) 

1 2 c 
1 ) H +L

Now comparing this with the expansion of the exponential  

F = exp[ fH  ] 
(7.43)

1 f H  + 1 2 L= +  f H  +1 2 2 

allows one to see that 
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c1 = f1


c2 = f2 − f1
2 

(7.44) 


The cumulant expansion can also be applied to time-correlations. Applying this to the 

time-ordered exponential operator we obtain: 

F t( ) = exp i  dt ω ( )+ ⎢
⎡
⎣
− ∫0 

t
t ⎥

⎤
⎦ (7.45) 

≈ exp ⎡⎣c t( ) + c t  ( )⎤⎦1 2 

t 
c1 = −i d∫ τ ω τ  (7.46)( )

0 

t τ 
c = −i d  τ 

2 dτ ω τ  ω τ  − ω τ  2 ω τ  1( ) ( )  ( )  ( )2 ∫ 2 ∫ 1 2 10 0 (7.47) 
= −i dτ dτ  δω τ  δω τ  ( )  ( )  2 1 2 1∫0 

t 

∫0 

τ2 

For Gaussian statistics, all higher cumulants vanish. 


