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6.4 NUCLEAR MOTION COUPLED TO ELECTRONIC TRANSITION1 

Here we will start with one approach to a class of widely used models for the coupling of nuclear 

motions to an electronic transition that takes many forms and has many applications. We will 

look at the specific example of electronic absorption experiments, which leads to insight into the 

vibronic structure in absorption spectra. Spectroscopically, it is also used to describe wavepacket 

dynamics; coupling of electronic and vibrational states to intramolecular vibrations or solvent; or 

coupling of electronic states in solids or semiconductors to phonons. Further extensions of this 

model can be used to describe fundamental chemical rate processes, interactions of a molecule 

with a dissipative or fluctuating environment, and Marcus Theory for non-adiabatic electron 

transfer. 

Two-electronic state as displaced harmonic oscillators 
We are interested in describing the electronic 

absorption spectrum for the case that the electronic 

energy depends on nuclear configuration. The 

simplified model for this is two identical harmonic 

oscillators potentials displaced from one another 

along a nuclear coordinate, and whose 0-0 energy 

splitting is Ee−Eg. We will calculate the electronic 

absorption spectrum in the interaction picture 

( H H V= 0 + ( ) ) using thet time-correlation 

function for the dipole operator. The Hamiltonian for the matter represents two Born-

Oppenheimer surfaces  

= G H G  + E H E  (6.1)H0 G E 

where the Hamiltonian describing the ground and excited states have contributions from the 

nuclear energy and the electronic energy 

HG = g + gE H  
. (6.2)

H  E H  = +E e e 
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The harmonic vibrational Hamiltonian has the same curvature in the ground and excited states, 

but the excited state is displaced by d relative to the ground state. 

H g = 
p2 

+
1 mω0

2 q2	 (6.3)
2m 2 

He = 
p2 

+
1 mω0

2 (q − d )2	 (6.4)
2m 2


Now we are in a position to evaluate the dipole correlation function  


eiH t /h μ e−iH t /h μ0 0Cμμ t p n n . 	(6.5)( ) = ∑ n 
= ,n E G  

with the time propagator 
−i H  + E t /h − ( e Ee )t /hi H  +−iH t /h ( g g )e 0	 = G e G + E e E (6.6) 

We begin by making two approximations: 

1) 	 Born-Oppenheimer Approximation. Although this is implied in eq. (6.2) when we 

write the electronic energy as independent of q, specifically it means that we can write 

the state of the system as a product state in the electronic and nuclear configuration: 

G ,= g n (6.7) 

2) 	 Condon Approximation. This approximation states that there is no nuclear dependence 

for the dipole operator. It is only an operator in the electronic states. 

μ = g μ e + e μ g (6.8)ge eg 

Under all reasonable conditions, the system will only be on the ground electronic state at 

equilibrium, ,g n  , and with the expression for the dipole operator (6.8), we find: 

2 −i E  −E t /h iH t /h −iH t /he ( e g )Cμμ ( )t	 = μ e g e e (6.9)eg 

Here the oscillations at the electronic energy gap are separated from the nuclear dynamics in the 

final factor, sometimes known as the dephasing function: 
iH t /he−iH t /he g eF t( ) = 

(6.10)
†= U Ug e 
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Note that physically the dephasing function describes the time-dependent overlap of the initial 

nuclear wavefunction on the ground state with the time-evolution of the same wavepacket on the 

when initially projected onto the excited state  

F t( ) = ϕg (t ) ϕe (t ) . 	(6.11) 

This is a perfectly general expression that does not depend on the particular form of the potential.  

If you have knowledge of the nuclear and electronic eigenstates or the nuclear dynamics on your 

ground and excited state surfaces, this expression is your route to the absorption spectrum.2

 To evaluate F(t), it helps to realize that we can write the nuclear Hamiltonians as 
†H g = hω0 (a a  + 1

2 )	 (6.12) 

ˆ † ˆH = D H  D  . 	(6.13)e g 

Here D is the spatial displacement operator  

D̂ = exp (−ipd  h)	 (6.14) 

which shifts an operator in space: 

ˆ †D qD  ˆ = q + d . 	(6.15) 

This allows us to express the excited state Hamiltonian in terms of a shifted ground state 

Hamiltonian in eq. (6.13), but also allows us to relate the time-propagators on the ground and 

excited states 
− e / −iH t /h ˆe iH t h = D̂†e g D . 	(6.16) 

Substituting eq. (6.16) into eq. (6.10) allows us to write  

F t( ) = U † e−idp/h U eidp /h 
g g 

(6.17)
idp 0 /−idp t ( )/h ( ) h = e e 

since 	 p (t ) = Ug 
† p (0)Ug . (6.18) 

Up to now, everything we’ve written is general to any form of the potential, but here we 

will continue by evaluating the results for the specific case of a harmonic nuclear potential. The 

time-evolution of p is obtained by evaluating eq. (6.18) by applying eq. (6.12) to  

p =	
i (a† − a) mhω0 . (6.19)
2 

†Remembering a a  = n , we find 
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† in t ω −i ω0 ( ) 0 −in t ω − ω0U aU = e 0 ae n t = aei n−1 ω te 0 = ae i t 
g g (6.20)
† † † + ω0U a U  = a e i t  
g g 

which gives 

p t( ) = i m	hω0 (a†ei tω0 − a e−i t  ω0 ) . (6.21)
2 

So for the dephasing function we now have 

F t( ) = ⎣ ( † ω − a e )⎦ exp ⎡⎣− ( − a)⎤⎦exp ⎡d a  ei t0 −i t  ω0 ⎤ d a  † , (6.22)
%	 % 

where we have defined a dimensionless displacement variable 

d d= 
mω0 . 	(6.23)

% 2h 

†	 †Since a  and a do not commute (⎣⎡a a, ⎦⎤ = −1) , we split the exponential operators using the 

identities 

ˆ ˆ ⎢A B⎥⎦A Bˆ + ˆ A B  −
1
2 

⎡
⎣ 

ˆ , ˆ ⎤ 

e = e e e  (6.24) 
λa† +μa λa† μa 1

2λμe = e  e e . (6.25) 
This leads to 

† i t  i t  1F t  ( ) = exp ⎣⎡d a e ω0 
⎦⎤ exp ⎣⎡−d ae− ω0 

⎦⎤ exp ⎣⎡− 2 d
2 
⎦⎤ 

% % % (6.26) 
× exp ⎡−da† ⎤ exp [d a ]exp ⎡− 1 d 2 ⎤⎣ % ⎦ % ⎣ 2 % ⎦ 

Now to simplify our work, let’s specifically consider the low temperature case in which 

we are only in the ground vibrational state at equilibrium . Since a = 0 andn = 0 0 

0 a† = 0 , 

−λae 0 = 0 
(6.27)

λa†
0 e = 0 

and 

F t  ( ) = e−d 
% 

2 
0 exp  ⎡−d a  i t0 exp  ⎡⎣−d a† ⎤ 0 . 	(6.28)⎣ % 

e− ω ⎤⎦ % ⎦ 

Since the operator defined through an expansion in raising operators, this expression in a bit 

tough to evaluate, as is. However, the evaluation becomes as easy as the previous step if we can 

exchange order of operators. Since 
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ˆ ˆÂ B̂ B̂ Â −⎡
⎣B A, ⎤

⎦e e = e e e  , (6.29) 

we write 

F t( ) = e−d 
% 

2 
0 exp  ⎡−d a ⎤ exp  ⎡−da e−i t ⎤ exp d e  −i t  ⎤ 0⎣ % 

† 
⎦ ⎣ % 

ω0 
⎦ ⎡⎣ % 

2 ω0 
⎦ 

⎣ %
2 ( −i tω0 )⎦ 

(6.30) 
= exp ⎡d e  −1 ⎤ 

So finally, we have the dipole correlation function: 
2 i tCμμ ( )t = μ ⎣ t  D e− ω0 

⎦  (6.31)exp ⎡−iωeg + ( −1)⎤ 
eg 

D is known as the Huang-Rhys parameter, and is a dimensionless factor related to the mean 

square displacement 
2 

D d= 2 = 
d mω0 (6.32)

% 2h

It represents the strength of coupling to the nuclear degrees of freedom. Note we can write our 

correlation function as 
2 e−iωmn − ( )  . (6.33)t  g t  C t( )  = ∑ pn μmn 

n 

Here g(t) is our lineshape function 
i t0g t( ) = − D e( − ω −1) . (6.34) 
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Absorption Lineshape and Franck-Condon Transitions 

The absorption lineshape is obtained by Fourier transforming eq. (6.31) 

σ abs ( ) = ∫
+∞ ei t Cμμ (  )  ω dt ω t 

−∞ . (6.35)
2 −D +∞ i tω −i t ω0= μ e ∫−∞ 

dt  e e ωeg exp ⎡⎣De−i t  ⎤⎦eg 

If we now expand the final term as  
∞ 1 jexp ⎡⎣D e−i tω0 

⎦⎤ =∑ D j (e−iω0t ) , (6.36) 
j=0 j! 

the lineshape is 

σ ω μ 
2 ∞

−D 1 j ( −ωeg − j ) . (6.37)∑e D δ ω  ω0abs ( ) = eg 
j=0 j! 

The spectrum is a progression of absorption peaks rising from ωeg, separated by ω0  with a 

Poisson distribution of intensities. This is a vibrational progression accompanying the electronic 

transition. The amplitude of each of these peaks are given by the Franck-Condon coefficients for 

the overlap of vibrational states in the ground and excited states 

2 
= e−D 1 Dv (6.38)

v! 
0 v 

The intensities of these peaks are dependent on D , which is a measure of the coupling strength 

between nuclear and electronic degrees of freedom.   
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Let’s plot the normalized absorption lineshape σ ′ ω = 2 as a function of D .abs ( )  
σ abs (ω) 
e− D μeg 

For D <1, the dependence of the energy gap on q is weak and the absorption maximum is at ωeg 

with n = 0 , with the amplitude of the vibronic progression falling off at Dn. For D >>1 (strong 

coupling), the transition with the maximum intensity is found for peak at n D .≈ So D 

corresponds roughly to the mean number of vibrational quanta excited from q = 0 in the ground 
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state. This is the Franck-Condon principle, that transition intensities are dictated by the vertical 

overlap between nuclear wavefunctions in the two electronic surfaces. 

To investigate the envelope for these transitions, we can perform a short time expansion 

of the correlation function applicable for t < 1 ω0 . If we approximate the first term with 

damping 

(− ω ) ≈ 1− i t  − 1 ω 2 2exp i t  ω t , (6.39)0 0 2 0 

then the lineshape is 
2 +∞ i tω −iωeg t D(exp(−iω0t )−1)σ abs ( )ω = μ ∫−∞ 

dt e e  eeg 

+∞ ⎡ 1 2 2  ⎤− D i
≈ μ 

2 

∫−∞ 
dt ei(ω ωegt ) e ⎢⎣

− ω0t−2ω0 t ⎥⎦ (6.40)eg 

2 +∞ i(ω ω− − ω )t −1 D tμ= ∫ dt e eg D 0 e 2 ω0
2 2  

eg −∞ 

This can be solved by completing the square, giving 

2 
exp 

⎡
⎢
⎢
− 

(ω ω− 

2 
eg

Dω
− 

0 

D 
2 

ω0 )
2 ⎤

⎥
⎥ 

. (6.41)ω π μσ abs ( ) = eg 

⎣ ⎦ 

The envelope has a Gaussian profile which is centered at Franck-Condon vertical transition 

ω = ωeg + Dω0 . (6.42) 

Thus we can equate D with the mean number of vibrational quanta excited in E  on absorption 
from the ground state.  Also, we can define the vibrational energy vibrational energy in E  on 
excitation at q = 0 

λ = Dhω0 = 1 
2 mω0 

2 2d . (6.43) 

λ is known as the reorganization energy. This is the energy that must be dissipated for 

vibrational relaxation on the excited state surface.   
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Note also that λ is the vibrational energy on the ground state surface at the excited state 

minimum q d . This is the point for vertical transitions for emission from the excited state = 

minimum to the ground state. Since vibrational energy on is dissipated quickly, we expect 

fluorescence to be red-shifted by 2 λ  and have mirror symmetry with respect to the absorption:   

σ ω 
+∞ i(ω ωeg )t−g t  ( )  

e

abs ( ) = ∫−∞ 
dt e 

− 

fluor ( ) ∫
i(ω ωeg −2λ)t−g *( )σ ω = 

+∞
dt e − t (6.44)

−∞ 

−i tg t( ) = D (e ω0 −1) 
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Coupling to a Harmonic Bath 
To further interpret this example, it is worth noting a similarity between the Hamiltonian for this 

displaced harmonic oscillator problem, and a general form for the coupling of an electronic 

“system” which is observed, and a harmonic oscillator “bath” whose degrees of freedom are dark 

to the observation, but which influence the behavior of the system.  This is a preview of the 

concepts that we will develop more carefully later for the description of fluctuations in 

spectroscopy. 

We demonstrated the electronic absorption lineshape derives from a dipole correlation 

function which describes the overlap between two wave packets evolving on the ground and 

excited surfaces E  and G . 

( )  

( )  ( )  ( ) 

0 0 

2 

G E 

iH t iH t 

iH t iH t 

eg g e 
e gi E  E  t  

C t G e e G 

G e  e  G  

t t e 

μμ μ μ 

μ μ 

μ ϕ ϕ 

− 

− 

− − 

= 

= 

≈

 (6.45) 

( )  ( )g e iH t iH t 
g et g e t e eϕ ϕ −= =  (6.46) 

This is a perfectly general expression, which indicates that the absorption spectrum is the Fourier 

transform of the time-dependent overlap between excited and ground state nuclear wave packets.    

Expressed in a slightly different physical picture, we can also conceive of this process as 

nuclear motions that act to modulate the electronic energy gap ωeg . We can imagine re-writing 

the same problem in terms of a Hamiltonian that describes the electronic energy gap’s 

dependence on q, i.e. its variation relative to ωeg . Defining an Energy Gap Hamiltonian: 

Heg = HE − HG −hωeg = He − H g (6.47) 

We can see that this leads to a problem for an electronic transition linearly coupled to a harmonic 

oscillator: 

H0 = He + Ee + H g + Eg . (6.48)
= hω + H + 2Heg eg g 

Noting that 

H g = 
p2 

+
1 mω0

2 q2 (6.49)
2m 2 
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we see 

Heg = 
1 mω0

2 (q − d )2 −
1 mω0

2 q2 

2 2 

= −  ω  20 
1 

ω0
2 d 2m d q  + m (6.50)

2 
= c q  + λ

The Energy Gap Hamiltonian describes a linear coupling between the electronic transition and a 

harmonic oscillator. The strength of the coupling is c and the Hamiltonian has a constant energy 

offset value given by the reorganization energy. 

This discussion illustrates how the displaced harmonic oscillator and Energy Gap 

Hamiltonian are isomorphic with a Hamiltonian for an electronic “system” coupled to a 

harmonic oscillator “bath”:   

H0 = HS + HB + HSB  (6.51) 

HS = e (Ee + λ  ) e + g  E  g g 

HB = 
p2 

+
1 mω0

2 q2 (6.52)
2m 2 

HSB = ωm 2
0 d q  

Here HSB describes the interaction of the electronic system (HS) with the vibrational bath (HB). It 

is a linear coupling Hamiltonian, meaning that it is linear in the bath coordinate has a strength-

ω2of-coupling term ( m d ).0

Coupling to Multiple Vibrations or a Continuum 
The Hamiltonians we have written so far describe coupling to a single bath degree of freedom, 

but the results can be generalized to many vibrations or a continuum of nuclear motions. This 

approach is used to treat the spectroscopy of dissipative systems, through the interaction of a 

system with a continuum of states that are dark to the field, and which we treat in a statistical 

manner, in addition to describing fluctuations in spectroscopy. 

So, what happens if the electronic transition is coupled to many vibrational coordinates, 

each with its own displacement?  The extension is straightforward if the modes are independent, 

i.e. we can conceive of the bath vibrations as harmonic normal modes. We imagine an electronic 

transition coupled to a set of normal modes for the molecule or lattice. Then we write the state of 
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the system as product states in the electronic and nuclear occupation, i.e. G = g n  ; 1, n2 ,..., ni . 

The dipole correlation function is then 
2 −iω tegCμμ ( )t = μ e ⋅ F1 ( ) ⋅ F2 ( )LFNt t ( )teg 

2 −iωegt ⎡ N 
⎡ i ti ⎤⎤− ω= μ e ⎢∏exp ⎣Di (e −1)⎦⎥ (6.53)eg 

⎣ i=1 ⎦ 
2 −iωegt−g t  ( )= μ eeg 

with 
i tg t( ) = ∑ Di (e− ωi −1) (6.54) 

i 

For independent modes, the dipole correlation function is just a product of multiple dephasing 

functions that characterize the time-evolution of the different vibrations.  In the time-domain this 

would lead to a complex beating pattern, which in the frequency domain appears as a spectrum 

with several superimposed vibronic progressions that follow the rules developed above. 

Taking this a step further, the generalization to a continuum of nuclear states should be 

apparent. This approach describes the absorption lineshape that results from dephasing or 

irreversible relaxation induced by coupling to a continuum. Given that we have a continuous 

frequency distribution of normal modes characterized by a density of states, W ( )ω , and a 

frequency dependent coupling, D(ω), we can change the sum in eq. (6.54) to an integral over the 

distribution 

−i tg t( ) = ∫ dω W (ω) D (ω)(e ω −1) . (6.55) 

Here the product ω D ω can be considered a coupling-weighted density of states, W ( )  ( )

sometimes referred to as a spectral density. 

What this treatment does is provide a way of introducing a bath of states that the 

spectroscopically interrogated transition couples with. You can see that if the distribution of 

states is very broad and coupling is a constant, we can associate g t( ) with a constant Γ, and we 

obtain a Lorentzian lineshape. So coupling to a continuum or bath provides a way of introducing 

relaxation effects or damping of the electronic coherence in the absorption spectrum.  More 

generally the lineshape function will be complex, where the real part describes damping and the 

imaginary part modulates the primary frequency and leads to fine structure.  
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Weak damping  

Strong damping 
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Displaced Harmonic Oscillator Model at Finite Temperature 

If you solve the problem for coupling to a single vibrational mode at finite temperatures, where 

excited vibrational levels in the ground state are initially populated, you find   
2 − ⎡ ⎡ 0 ω0 ⎤⎤Cμμ ( )t = μ e iωegt exp ⎣D ⎣(n +1)(e−i tω −1)+ n (e+i t −1)⎦⎦ . (6.56)eg 

β ω0hn = (e −1)−1 
(6.57) 

n  is the thermally averaged occupation number of the harmonic vibrational mode. Now, let’s 

calculate the lineshape. Expanding exponentials in the dephasing function and Fourier 

transforming gives 

D n 1 ∑∑⎜ ⎟ n ( − eg ( − 0 (6.58)σ abs ( )ω = μ 
2 e− (2 + )

∞ ∞ ⎛ D
j k

j k+ ⎞(n +1) j k δ ω  ω  − j k  )ω )eg 
j=0 k =0 ⎝ ! !  ⎠ 

The first summation over j (setting all k to zero) looks as before, but the second summation now 

includes “hot bands”: transitions upward from thermally populated vibrational states with a net 

decrease in vibrational quantum number on excitation. Note their amplitudes depend on the 

thermal occupation.  

We can extend this description to describe coupling to a many independent nuclear 

modes or coupling to a continuum. We write the state of the system in terms of the electronic 

state and the nuclear quantum numbers, i.e. E = ; ,  ,e n n  n  K , and from that: 1 2 3 
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F t( ) = exp ⎢∑ Dj ⎣
⎡(nj 1 (e−i tω j 1) nj ( +i tj 1 ⎦

⎤⎥
⎤⎡ 

+ ) − +  e ω − ) (6.59) 
⎣ j ⎦ 

or changing to an integral over a continuous frequency distribution of normal modes 

characterized by a density of states, W (ω) 
ω ω 

⎣∫ d W  ω ⎣ n ω 1) − +  ) ( ) ⎦⎦F t( ) = exp ⎡ ω ( ) ( )D ω ⎡( ( ) + (e−i t  1 n ω (ei t  −1)⎤⎤ (6.60) 

( )D ω  is the frequency dependent coupling. Let’s look at the envelope of the nuclear structure 

on the transition by doing a short-time expansion on the complex exponential as in eq. (6.39) 
2 2  

F t( )  = exp ⎢
⎡
∫ d D  ( )  ( )  ω W ω ⎜

⎛
− ω − 2n + ) ω t 

⎟
⎞
⎥
⎤

ω i t  ( 1 . (6.61) 
⎣ ⎝ 2 ⎠⎦ 

The lineshape is calculated from 

σ abs ω 
+∞ i(ω ω− eg )t ω2( ) = ∫−∞ 

dt e exp ⎡⎣−i ω t⎦⎤ exp ⎡⎣− 1
2 t2 ⎤⎦ (6.62) 

where we have defined the mean vibrational excitation on absorption 

ω = ∫ d Wω (ω) D ( ) (6.63)ω ω  

= λ / h

and 
2∫ ω ( ) D ( ) (ω) +1) (6.64)= d W ω  ω ω  (2n . 

square, eq. (6.62) gives 

)2 ⎤
2 π exp 

⎡
⎢

−(ω ωeg −− ω 
σ abs ( )ω = μ ⎥ (6.65)eg ω2 ⎥ω2 ⎢ 2

⎣ ⎦

The lineshape is Gaussian, with a transition maximum at the electronic resonance plus 

reorganization energy. The width of the Gaussian is temperature-dependent and given by eq. 

(6.64). 

2ω 

2ω  reflects the thermally averaged distribution of accessible vibrational states. Completing the 



 

Andrei Tokmakoff, MIT Department of Chemistry, 3/17/08 	 6- 27 

Readings 

1. 	 See also: 
  Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 

New York, 1995), p. 217, also p. 189. 
  Nitzan, A. Chemical Dynamics in Condensed Phases (Oxford University Press, New 

York, 2006). Chapter 12, Sec. 5. 
2. 	 For further on this see: 

 Chapter 9 of Schatz, G. C. & Ratner, M. A. Quantum Mechanics in Chemistry (Dover 
Publications, Mineola, NY, 2002). 

Also, Reimers, JR, Wilson, KR, Heller, EJ Complex time dependent wave packet 
technique for thermal equilibrium systems:  Electronic spectra. J. Chem. Phys. 79, 4749 
(1983). 


