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8.1. LINEAR RESPONSE THEORY 
We have statistically described the time-dependent behavior of quantum variables in an 

equilibrium system through correlation functions. We have also shown that spectroscopic 

lineshapes are related to correlation functions for the dipole moment. But it’s not the whole 

story. You have probably sensed this from the perspective that correlation functions are complex, 

and how can observables be complex? 

We will use linear response theory as a way of describing a real experimental observable. 

Specifically this will tell us how an equilibrium system changes in response to an applied 

potential. The quantity that will describe this is a response function, a real observable quantity. 

We will go on to show how it is related to correlation functions. 

In this also is perhaps the more important type of observation.  We will now deal with a 

nonequilibrium system, but we will show that when the changes are small away from 

equilibrium, the equilibrium fluctuations dictate the nonequilibrium response!  Thus a knowledge 

of the equilibrium dynamics are useful in predicting non-equilibrium processes. 

So, the question is “How does the system respond if you drive it from equilibrium?”  We 

will examine the case where an equilibrium system, described by a Hamiltonian H0 interacts 

weakly with an external agent, V(t). The system is moved away from equilibrium by the external 

agent, and the system absorbs energy from external agent.   

How do we describe the 

time-dependent properties of the 

system? We first take the external 

agent to interact with the system 

through an internal variable A. So 

the Hamiltonian for this problem is 

given by 

H H= 0 − f (t ) A . (0.1) 

Here f(t) is the time-dependence of external agent. We describe the behavior of an ensemble 

initially at thermal equilibrium by assuming that each member of the ensemble is subject to the 

same interaction with the external agent, and then ensemble averaging. Initially, the system is at 

equilibrium and the internal variable is characterized by an equilibrium ensemble average A . 
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The external agent is then applied at time 

t0, and the system is moved away from 

equilibrium, and is characterized through a 

non-equilibrium ensemble average, A . 

A ≠ A t( ) as a result of the interaction. 

For a weak interaction with the 

external agent, we can describe A( )t  by 

performing an expansion in powers 

of f ( )t . 

1A t ( ) = (terms f ( )0 ) + (terms f ( ) ) +K  (0.2) 

A t( ) = A + ∫ dt  0 R  t ,t  0 f t0 +K  (0.3)(  ) ( )  

In this expression the agent is applied at t0 , and we observe the system at t . The leading term in 

this expansion is independent of f, and is therefore equal to A . The next term in (0.3) describes 

the deviation from the equilibrium behavior in terms of a linear dependence on the external 

agent. R (t ,t  0 ) is the linear response function, the quantity that contains the microscopic 

information that describes how the system responds to the applied agent.  The integration in the 

last term of eq. (0.3) indicates that the non-equilibrium behavior depends on the full history of 

the application of the agent f ( )  and the response of the system to it.  We are seeking at0 

quantum mechanical description of R. 

Rationalization for an expansion of A t( )  in powers of f (t ) : 

Let’s break time up into infinitesimal intervals: 

ti = iΔ


f (ti ) = fi
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A t  ( ) = A = A (K , f  , f , f )i i i i−2 i−1 i 

Now, Taylor series expand about all fi = 0 

A t  , ,  ) 
⎛ ∂Ai ⎟

⎞
( ) = A (K 0 0 0  + ⎜ f + Ki i 4244 ∑

≤ ⎝ ∂ j 
⎟
⎠ 

j14 3 j i
⎜ f 

f j =0A 

Value with no Sum over change due to force 
f applied at all times of application 

Linear (first-order) term: 

∑
⎛
⎜⎜
∂Ai

⎞
⎟ f j = ∑ jΔ

⎡
⎢

1 ∂Ai ⎥
⎤ 

f j

j ⎝ ∂f j 

⎟
⎠ f j =0 j ⎢⎣ jΔ ∂f j ⎥⎦


ti

Δ→0 
... ∫ ) ( )  jlim ( )  = dt R t t f t j ( j , i 

−∞ 

Properties of the Response Function 

1. Causality:  The system cannot respond before the force has been applied.  Therefore 

R t( ,t0 ) = 0 for t t< 0 , and the time-dependent change in A is 

t
δA t( ) = A t( ) − A d 0 , 0 f t  0 (0.4) 

The lower integration limit has been set to −∞  to reflect that the system is initially at 

equilibrium, and the upper limit is the time of observation. We can also make the statement of 

causality explicit by writing the linear response function with a step response: t t  R t ,t  , 

= ∫−∞ 
t  R t( t )  ( )  

Θ −( 0 ) ( 0 ) 

where 

⎪⎧0 (t t< 0 )Θ −(t t0 ) ≡ ⎨
⎪1 (t t0 )

. (0.5) 
⎩ ≥ 
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2. Stationarity:  Similar to our discussion of correlation functions, the time-dependence of the 

system only depends on the time interval between application of potential and observation. 

Therefore we write R (t ,t  0 ) = R t ( − t0 ) and 

δ ( ) = dt R  t  ( − t f tA t 
t 

)  ( )  (0.6)∫−∞ 0 0 0 

This expression says that the observed response of the system to the agent is a convolution of the 

material response with the time-development of the applied force. 

Rather than the absolute time points, we can define a time-interval t t0τ =  −  , so that we 

can write 

δA t( ) = ∫
∞

dτ R ( )  (  t − τ  (0.7)τ f )
0 

3. Impulse response.  Note that for a delta function perturbation: 

f (t ) = λδ (t − t0 ) (0.8) 

We obtain 

δ A t( ) = λR t  ( − t0 ) . (0.9) 

Thus, R describes how the system behaves when an abrupt perturbation is applied and is often 

referred to as the impulse response function. 
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FREQUENCY-DOMAIN REPRESENTATION: THE SUSCEPTIBILITY 

The observed temporal behavior of the non-equilibrium system can also be cast in the frequency 

domain as a spectral response function, or susceptibility. We start with eq. (0.7) and Fourier 

transform both sides: 

δ A( ) ≡ ∫−∞ 
t ⎢⎣
⎡ 

0 
τ ( ) (f t ⎥⎦

⎤ i t  (0.10)ω 
+∞

d ∫
∞

d R τ −τ ) e ω 

Now we insert e −iωτ e +iωτ =1 and collect terms to give 

A 
+∞ ∞

τ f t ) i tω −( ) τ iωτδ ω = ( ) ∫−∞ 
dt ∫0 

d Rτ ( )  (  − τ e e (0.11) 

+∞ ∞ω ωτ= ∫−∞ 
dt′ ei t′ f t( )′ ∫0 

τ ( ) eid R τ (0.12) 

or δ A( )  f ω χ ω .ω = % ( ) ( )  (0.13) 

In eq. (0.12) we switched variables, setting t t= −τ . The first term f% ( )ω  is a complex′

frequency domain representation of the driving force, obtained from the Fourier transform 

of f ( )t′ . The second term χ ( )ω  is the susceptibility which is defined as the Fourier-Laplace 

transform (single-sided Fourier transform) of the impulse response function. It is a frequency-

domain representation of the linear response function. Switching between time and frequency 

domains shows that a convolution of the force and response in time leads to the product of the 

force and response in frequency. This is a manifestation of the convolution theorem: 

A t( ) ⊗ ( ) ≡ ∫−∞ 
d A t( − τ )  ( )  ∫−∞ 

d A τ ) F−1 ⎡⎣A% ω ⎦B t 
∞

τ B τ = 
∞

τ ( ) (B t − τ = ( ) ( )B% ω ⎤ (0.14) 

where A% ( )ω =  ⎡F ⎣A t( ) ⎤⎦ , F [L] is a Fourier transform, and F−1 [L] is an inverse Fourier 

transform.

 Note that ( )R τ  is a real function, since the response of a system is an observable; 

however, the susceptibility χ ( )ω  is complex: 

χ(ω =) χ′(ω +) iχ′′(ω) . (0.15) 

Since 

χ ω =  ( )  ∫
∞

d Rτ ( ) τ eiωτ , (0.16)
0 

We have 
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′ ∫0 

∞
d Rτ ( )cos ωτ = Re ⎣F (R ( ) ⎦χ =  τ  ⎡ τ ) ⎤ (0.17) 

and 

′′
0 

∞
τ τ sin ⎡⎣ τ ) ⎤⎦ .χ = ∫ d R  ( )  ωτ = Im F (R ( ) (0.18) 

χ′ and χ′′ are even and odd functions of frequency: 

χ′( )ω = χ′( ) −ω (0.19) 

( ) = −  ′′( ) ω (0.20)χ′′ ω χ −

so that χ ( ) −ω = χ ω* ( ) . (0.21) 

Notice also that eq. (0.21) allows us to write 

χ′ ω 
1 ( ) ⎦( ) = ⎡⎣χ ω ( ) + χ −ω ⎤ (0.22)
2 

χ′′( )ω = 
1 
⎡⎣χ ω ( ) − χ ω ⎤⎦ .−( ) (0.23)

2i 

KRAMERS-KRÖNIG RELATIONS 

Since they are cosine and sine transforms of the same function, χ′(ω) is not independent 

of χ′′( )ω . The two are related by the Kramers-Krönig relationships: 

+∞ χ ω
χ ω′( ) = 

1 
P

−∞

′′ ′( ) dω′ (0.24)
π ′∫ ω −ω


1 +∞ χ ω′( ′)
′′( ) = −
π −∞ ′ 

dω′ (0.25)χ ω  P∫ ω −ω

These are obtained by substituting the inverse sine transform of eq. (0.18) into eq. (0.17): 

χ ω  ∫0 ∫−∞ χ ω ′′( ) = 
1 ∞

dt cosωt 
+∞

′′( )′ sin ω t dω′ 
π (0.26)
1 +∞ L

lim ∫ dω χ ω  ( ) ∫ cosωt sin ω′= ′ ′′ ′ t dt 
L→∞ −∞ 0π 

1 1Using cos ax sin bx = 2 sin (a + b) x + 2 sin (b − a) x , this can be written as 
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′ 1 
P∫ ′ ′′  1

2 ⎢
⎡ cos (ω ω)L +1 cos (ω  ω  )L +1 

⎥
⎤

χ ω( ) = lim 
+∞

dω χ ω  ( ) − ′ + 
− 

′ − 
(0.27)

′ ′ − 

If we choose to evaluate the limit L →∞ , the cosine terms are hard to deal with, but we expect 

they will vanish since they oscillate rapidly. This is equivalent to averaging over a 

monochromatic field. Alternatively, we can instead average over a single cycle: 

π L→∞ −∞ ⎣ ω ω  + ω ω  ⎦ 

π ω ωL = 2 /  ( ′ − ) to obtain eq. (0.24). The other relation can be derived in a similar way.  Note 

that the Kramers-Krönig relationships are a consequence of causality, which dictate the lower 

limit of tinitial = 0 on the first integral evaluated above. 
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Example: Classical Response Function and Susceptibility 

We can model absorption of light through a resonant interaction of the electromagnetic field with 

an oscillating dipole, using Newton’s equations for a forced damped harmonic oscillator: 

x + γ  + ωx 0
2 x = F (t ) (0.28)&& &

Here the x is the coordinate being driven, γ is the damping constant, and 0ω =  k / m  is the 

natural frequency of the oscillator. One way to solve this problem is to take the driving force to 

have the form of a monochromatic oscillating source 

F t( ) = F cos0 ω =t qE0 cos ωt . (0.29)
m 

Then, equation (0.28) has the solution 

x t( ) = qE0 1 
1 sin (ωt +δ ) (0.30)

m 2 2 2 2 2 2((ω −ω ) + 4γ ω )0 

with tanδ =
ω0

2 −ω 2 

. (0.31)
2γω 

This shows that the driven oscillator has an oscillation period that is dictated by the driving 

frequency ω, and whose amplitude and phase shift relative to the driving field is dictated by the 

detuning (ω−ω0). If we cycle average to obtain the average absorbed power from the field, the 

absorption spectrum is 

P ω ( )  ⋅ x t( )F t & 

γω 2 F0
2 1 . (0.32) 

avg ( ) = 

= 1m ⎡ 2 2 2 2 2 ⎤(ω −ω ) + 4γ ω 
2 

⎢ 0 ⎥⎣ ⎦ 

A response function approach would be to find the solution to 

x t( ) = ∫0 

∞
dτR ( ) (t − τ , (0.33)τ f ) 

which we can obtain by solving eq. (0.28) using an impulsive driving force. If F t( ) = F0δ (t − t0 ) , 

then x t = F R t , and we obtain( )  0 ( ) 


1 ⎛ γ
R ( )τ =  exp ⎜ − τ ⎞⎟ sin Ωτ (0.34)
mΩ ⎝ 2 ⎠

The reduced frequency is defined as 
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. (0.35)2 2 
0 4Ω =  ω  − γ  

From this we obtain the susceptibility 

χ ω =  ( )  
m ( 0

1 
i )

. (0.36)
2 2ω −ω  − γω  

As we will see, the absorption of light by the oscillator is related to 

χ ω =  ( )  2γω . (0.37)′′
⎡ 2 2 2 2 2 ⎤m 
⎣(ω −ω ) + γ ω 

⎦⎢ 0 ⎥ 

For the case of weak damping γ << ω0 , eq. (0.36) is commonly written as a Lorentzian lineshape 

by using the near-resonance approximation ω2 −ω0
2 = (ω ω0 )(ω ω − 0 ) ≈ 2 ( − 0 )+ ω ω ω 

χ ω ≈  ( )  1 1 . (0.38)
2mω ω−ω + γi / 20 0 
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Nonlinear Response Functions 
If the system does not respond in a manner linearly proportional to the applied potential but still 

perturbative, we can include nonlinear terms, i.e. higher expansion orders of ( )A t  in eq. (0.3). 

Let’s look at second order: 

( )
( )2

A t δ = ( ) (  )  (  )  (  )  2 
1 2 1 2 1 1 2 2dt dt R t;t ,t f t f t∫ ∫  (0.39) 

Again we are integrating over the entire history of the application of two forces f1 and f2, 

including any quadratic dependence on f . 

In this case, we will enforce 

causality through a time ordering that 

requires (1) that all forces must be 

applied before a response is observed and 

(2) that the application of f2 must follow 

f1. That is t t2 1  or≥ ≥ t

(2) (t;t ,t )⇒ R(2) ⋅ (t t ⋅Θ t − t )R 1 2  Θ −  2 ) ( 2 1 (0.40) 

which leads to  

δA t ( )
(2)
=

t
dt 

t2 dt R 2 t;t ,t )  ( )  ( )  f t f t (0.41)2 1 1 2 1 1 2 2∫−∞ ∫−∞ 

( ) ( 

Now we will call the system stationary so that we are only concerned with the time intervals 

between consecutive interaction times.  If we define the intervals between adjacent interactions 

τ1 = t2 − t1 (0.42)
τ 2 = t t2−

Then we have 

δA t  = dτ dτ R( ) (τ  τ  , f t − τ  − τ  f t − τ  (0.43)( )
(2)

∫0 

∞

∫0 

∞ 2 ) (  ) (  )1 2 1 2 1 1 2 2 2 
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8.2. QUANTUM LINEAR RESPONSE FUNCTIONS 

To develop a quantum description of the linear response function, we start by recognizing that 

the response of a system to an applied external agent is a problem we can solve in the interaction 

picture.  Our time-dependent Hamiltonian is  

( ) = H − ( ) ˆ = H  V t  H t  0 f t A  0 + ( ) (0.44) 

H0 is the material Hamiltonian for the equilibrium system. The external agent acts on the 

equilibrium system through ˆ (t). We A , an operator in the system states, with a time-dependence f

take V(t) to be a small change, and treat this problem with perturbation theory in the interaction 

picture.   

We want to describe the non-equilibrium response ( )A t , which we will get by ensemble 

averaging the expectation value of Â . Remember the expectation value for a pure state in the 

interaction picture is  

= ψ I (t ) A t  ψ I (t )A t( ) I ( ) . (0.45)
†= ψ0 U A U  II I ψ0 

The interaction picture Hamiltonian for eq. (0.44) is 

( ) = † ( ) ( ) 0 ( ) (0.46) 
V t  U t V t U t  I 0 

= − f t A t  ( )  ( )  I 

To calculate an ensemble average of the state of the system after applying the external potential, 

we recognize that the non-equilibrium state of the system characterized by described by ψ I (t ) 

is in fact related to the initial equilibrium state of the system ψ0 , as seen in eq. (0.45). So the 

non-equilibrium expectation value ( )A t  is in fact obtained by an equilibrium average over the 

†expectation value ofU A U :I I I 

†A t( ) = p n U A U  n . (0.47)∑ n I I I 
n 

Again n are eigenstates of H0. Working with the first order solution to U tI ( )

U tI ( ,t0 ) = +1 
h 

i
∫t

t 

0 

dt f t  A t′ I ′′ ( )  ( )  (0.48) 
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we can now calculate the value of the operator A at time t, integrating over the history of the 

applied interaction ( )′ :f t

A t  U A( ) = I
† 

I UI 

∫t0 

′ 1+ ∫t0 

dt f t A t ( )  ( )  ⎬= ⎧⎨1−
i t

dt  f t A t ′ ( )  ( )  ′ I 
⎫
⎬ A t I ( )  ⎧⎨ 

i t 
′ ′ I ′ ⎫ (0.49) 

⎩ h ⎭ ⎩ h ⎭ 

Here note that f is the time-dependence of the external agent.  It doesn’t involve operators in H0 

and commutes with A. Working toward the linear response function, we just retain the terms 

linear in ( )′f t

i t  f t  A t A t  ′ − ( )  ( )  }A t  ( ) ≅ A t( ) + 
t
d ′ ( )′ { ( )  ( )  A t A t  ′ I 

h ∫ 0 
I I I It 

= A t +
i t

dt f t  A t ,′ ⎡ 
(0.50) 

( )  ∫ ′ ( ) ⎣ I ( )  A t  ( )′ ⎦⎤I I
h t0 

Since our system is initially at equilibrium, we set t0 = −∞  and switch variables to the time 

interval t t A t  U t A= †τ =  − ′ and using U t  obtainI ( )  0 ( ) 0 ( ) 

A t  
h 

i
∫0 

∞
τ ( I 0( ) = A t  I ( )  + d f t  − τ  ) ⎣⎡A ( )  τ , AI ( )  ⎦⎤ (0.51) 

We can now calculate the expectation value of A by performing the ensemble-average described 

in eq. (0.47). Noting that the force is applied equally to each member of ensemble, we have 

A t( ) = A + 
h 

i
∫0 

∞ 
τ ( − τ  )d f t  ⎣AI ( )  AI ( )  ⎤⎦⎡ τ , 0 (0.52) 

The first term is independent of f, and so it comes from an equilibrium ensemble average for the 

value of A. 

A t( ) = p n n = A (0.53)∑ n AI 
n 

The second term is just an equilibrium ensemble average over the commutator in AI(t): 

⎡A τ , A 0 ⎤ = p n ⎡A τ , A 0 ⎤ n . (0.54)⎣ I ( )  I ( )  ⎦ ⎣ I ( )  I ( )  ⎦∑ n 
n 

Comparing eq. (0.52) with the expression for the linear response function, we find that the 

quantum linear response function is 
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R τ = −  ⎡A τ , A 0 ⎤ τ ≥ 0( )  
h

i 
⎣ I ( )  I ( )⎦ (0.55) 

= 0 τ<0 

or as it is sometimes written with the unit step function in order to enforce causality: 

(0.56)

The important thing to note is that the time-development of the system with the applied external 

potential is governed by the dynamics of the equilibrium system. All of the time-dependence in 

the response function is under H0. 

The linear response function is therefore the sum of two correlation functions with the 

order of the operators interchanged, which is the imaginary part of the correlation function 

C′′( )τ 

τ = −  Θ τ  { τ 0 −R ( )  i ( )  A ( )  ( )A ( )  ( )0 τ }I I AI AI
h 
i

= −  Θ τ  ( )(C ( ) τ −C τ . (0.57)AA 
*
AA ( ))

h 
2

= Θ τ C′′ τ( )  ( )
h 

As we expect for an observable, the response function is real. If we express the correlation 

function in the eigenstate description: 
2 − ωC t( ) =∑ pn A e i mnt (0.58)mn 

n,m 

then 
2R ( )t = 

2 
Θ( )  pt ∑ A sinωmn t (0.59)mn

h n,m 
n 

R ( )τ  can always be expanded in sines – an odd function of time. This reflects that fact that the 

impulse response must have a value of 0 (the deviation from equilibrium) at t = t0, and move 

away from 0 at the point where the external potential is applied. 

( ) ( ) ( )0I I
iR A , Aτ = − Θ τ τ⎡ ⎤⎣ ⎦
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8.3. THE RESPONSE FUNCTION AND ENERGY ABSORPTION 
Let’s investigate the relationship between the linear response function and the absorption of 

energy from an electromagnetic field. We will relate this to the absorption coefficient α 

&α = E I/  which we have described previously. For this case, 

= − f t A  ( ) = H0 − ⋅ ( )H H0 μ E t  (0.60) 

This expression gives the energy of the system, so the rate of energy absorption averaged over 

the non-equilibrium ensemble is described by:  

E& = ∂H 
= −

∂f A t  ( )  (0.61)
∂t ∂t 

We will want to cycle-average this over the oscillating field, so the time-averaged rate of energy 

absorption is 

E& = 
T 
1 
∫0 

T
dt 
⎣
⎡
⎢−

∂
∂ 

f
t

A t  ( )⎥⎦
⎤ 

= 
1 
∫

T
dt
∂f t( ) ⎡ 

(0.62) 
A + d R τ τ f t −τ ⎤∫0 

∞ 

( )  (  )⎥⎦T 0 ∂t ⎣⎢ 

Here the response function is R (τ ) = −i ⎡⎣μ τ  μ  0 ⎦ /h . For a monochromatic ( ) , ( )⎤ 

electromagnetic field, we can write  

f t = E cos ωt = 1 ⎡E e−i tω + E* ei t ⎤⎦ , (0.63)( )  0 2 ⎣ 0 0 
ω 

which leads to the following for the second term in (0.62): 

1 
∫0 

τ ( ) ⎣E e  −i t( τ ) + 0
* i t( −τ )

⎦ = 
1 
⎣E e  −i t  ( )+ 0

* i tω χ ( ω)⎤⎦ (0.64)
∞

d R τ ⎡ 
0 

ω − E e  ω ⎤ ⎡ 0 
ω χ  ω  E e  − 

2 2 

By differentiating (0.63), and using it with (0.64) in eq. (0.62), we have 

1E& = −  ⎣ ( ) − f ( )  0 ⎤⎦ − 
1 
∫0 

T
d ⎣− ω 0e

i t + ω 0 e ⎦ ⎣E0e
ω χ ω  + E0 e

i tχ ( ⎦t  i E − ω i E* i tω ⎤ ⎡  −i t  ( )  * ω −ω)⎤ (0.65)A  f T  ⎡ ⎡ 
T 4T 

We will now cycle average this expression, setting T = 2π ω . The first term vanishes and the 

T −i tω +i t  −i tω i tcross terms in second integral vanish, because T 
1 ∫ dt e e ω =1 and ∫

T

dt e e− ω = 0 . 
0 0 

So, the rate of energy absorption from the field is 
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i 2E& = ω ⎡χ ω( ) ( ) − − χ ω ⎤E04 ⎣ ⎦ 
(0.66)

ω 
= χ ω2 ′′( )E02 

So, the absorption of energy by the system is related to the imaginary part of the susceptibility. 
2Now, from the intensity of the incident field, I c= / 8π , the absorption coefficient isE0 

( )  E
& 4πω ( )= ′′α ω = χ . (0.67)
I c 

Now, let’s show that this is consistent with the expression we found earlier 

∞
( )  4 2 

ω ( − e−β ω ∫−∞ 

i t Cμμ ( )  (0.68)α ω = 
π 1 h ) dt e ω t . 
hc 

Starting with the imaginary part of the susceptibility 

χ ω = χ ω −′′ − χ ω( )  
2
1 
i 
( ( )  ( )  ) 

ω ω= 
1 
∫
∞

dt e i t  ⎡C ( )t −CAA ( ) −t ⎤ − 
∞

dt e−i t  ⎡C t −CAA ( ) ⎤}{ ⎣ AA ⎦ ∫ ⎣ AA ( )  −t ⎦2h 0 0 
(0.69) 

i t  i t′ = 
2
1 
h {∫0 

∞
dt e ω ⎡⎣CAA ( )t −CAA ( ) −t ⎤⎦ − ∫−∞ 

0 
dt′e ω ⎡⎣CAA ( )t′ −CAA ( ) −t′ ⎤⎦} 

% ω − %= 
2
1 
h
(CAA ( ) CAA ( ) −ω ) 

We have also established that the correlation functions obey the detailed balance condition: 

C ( ) ω =e−β ωC% (ω) = C% * (ω)% 
AA − h 

AA AA (0.70) 

This relationship reflects the fact that upward and downward transition rates between states 

separated by ω are related by the population difference. This allows us to write: 

C% AA ( ) ±C% AA (−ω) = (1 ± e−β ωh )C%AA (ω) (0.71)ω 

So 

χ ω  
1 −β ω ) ( )h′′( ) = (1− e C ω 
2h AA 

(0.72) 
h +∞ ω= 

1 (1− e−β ω ) ∫−∞ 
ei t  A t( )  ( )A 0 dt 

2h

Inserting into eq. (0.67), we have the result from earlier: 

α ω  
2πω β ωh ) +∞ i t− ω( ) = 

c (1− e ∫−∞ 
e μ ( )t ( )μ 0 dt (0.73)

h

ω
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So the absorption of energy from an external force, that is the time-evolution of a non-

equilibrium system, is related to the imaginary part of χ . In turn, within the weak perturbations 

allowed by linear response, χ  is related to the Fourier transform of the correlation function that 

describes the fluctuations and dynamics of the equilibrium system CAA (t ) . Relationships of this 

form that relate non-equilibrium dynamics of the system driven away or relaxing toward 

equilibrium to the fluctuations about the equilibrium state are known as fluctuation-dissipation 

relationships. 
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8.3. RELAXATION OF A PREPARED STATE 

The impulse response function ( )R t  describes the 

behavior of a system initially at equilibrium that is 

driven by an external field.  Alternatively, we may 

need to describe the relaxation of a prepared state, in 

which we follow the return to equilibrium of a 

system initially held in a non-equilibrium state. This 

behavior is described by step response function S t( ) . 

The step response comes from holding the system 

with a constant field H H0 − fA  until a time t0 when the system is released, and it relaxes to = 

the equilibrium state governed by H H0 .= 

We can anticipate that the form of these two 

functions are related. Just as we expect that the impulse 

response to rise from zero and be expressed as an odd 

function in time, the step response should decay from a 

fixed value and look even in time. In fact, we might 

expect to describe the impulse response by 

differentiating the step response. 

• Response Functions are real. 

• Quantum Correlation Functions are complex:  − =C t  C t( ) * ( ) 

• Classical Correlation Functions are real and even:  C t( ) =C (−t ) 

For relaxation in terms of a real observable that is even in time, we construct a symmetrized 

function: 
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1 = 1SAA ( )t = 2 { A t( )  ( )A 0 + A (0) A t( ) ⎡A t( ) , A (0)⎤I I I I } 2 ⎣ I I ⎦ + 

1 {C t + t= ( )  C ( ) − }2 AA AA 

= CAA ( )′ t 

S is related to the real part of the correlation function, and defined for t ≥ 0 . The impulse 

response is related to the time-derivative of the step response, and in the classical limit 

R t( ) = 
1 d SAA ( )t (high T limit)

kT dt 

ωIf we define SAA ( )ω = ∫0 

∞
dt S AA ( )t ei t  , then 

hS ω = 1 ⎡C ω +C −ω ⎤ = 1 1 + e−β ω  C ωAA ( )  2 ⎣ AA ( )  AA ( ) ⎦ 2 ( ) AA ( )  

χ ω = S ( )ω (classical limit)′′( )  
h 

1 tanh ⎛⎜
⎝
β ωh 

2 
⎞
⎟
⎠ 

SAA ( )ω ⇒ 
2 
ω 
kT AA 

This is the fluctuation-dissipation theorem (Chemistry Nobel Prize, 1968; proven in 1951 by 

Callen and Welton). 

Lars Onsager (1930): The relaxation of macroscopic non-equilibrium disturbance is governed by 

the same laws as the regression of spontaneous microscopic fluctuations in an equilibrium state. 




