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3. IRREVERSIBLE RELAXATION1 

It may not seem clear how irreversible behavior arises from the deterministic TDSE, although this 

is a hallmark of all chemical systems. To show how this comes about, we will describe the 

relaxation of an initially prepared state as a result of coupling to a continuum.  We will show that 

first-order perturbation theory for transfer to a continuum leads to irreversible transfer—an 

exponential decay—when you include the depletion of the initial state.   

The Golden Rule gives the probability of transfer to a continuum as:   

2 ρ (E  E  k = A )wkA =
∂PkA = 

2π VkA∂t =

PkA = w  t t  A ( − ) (3.1)k 0 

PAA = −1 PkA 

The probability of being observed in k  varies linearly in time.  This will clearly only work for 

short times, which is no surprise since we said for first-order P.T. ( ) ≈ k 0k ( ) .b t  b

What long-time behavior do we expect?  A time-independent rate is also expected 

for exponential relaxation. In fact, for exponential relaxation out of a state A , the short time 

behavior looks just like the first order result: 

P t P − 

1 w t "
AA ( ) = AA (0 exp  ) ( wkAt ) (3.2)

= −  kA + 

So we might believe that wkA  represents the tangent to the relaxation behavior at t = 0 . 

∂PkAwkA = (3.3)
∂t t0 

The problem we had previously was we don’t account for depletion of initial state.   

From an exact solution to the two-level problem, we saw that probability oscillates 

sinusoidally between the two states with a frequency given by the coupling:   
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2 2Δ +V
Ω =  kA 

R = 

But we don’t have a two-state system.  Rather, we are relaxing to a continuum.  We might 

imagine that coupling to a continuous distribution of states may in fact lead to exponential 

relaxation, if destructive interferences exist between oscillations at many frequencies representing 

exchange of amplitude between the intital state and continuum states. 

COUPLING TO CONTINUUM 

When we look at the long-time probability amplitude of the initial state (including depletion and 

feedback), we will find that we get exponential decay.  The decay of the initial state is irreversible 

because there is feedback with a distribution of destructively interfering phases.   

Let’s look at transitions to a continuum of states { k }  from an initial state A  under 

constant perturbation. These form a complete set; so for ( ) = 0 +  with H n  EH t  H V t( ) 0 = n .n

1 =∑ n n = A A +∑ k k  (3.4) 
n k 

initial continuum 

As we go on, you will see that we can identify A  with the “system” and { k } with the “bath” 

when we partition H H  = + H . We want a more accurate description of the occupation of the 0 S B 

initial and continuum states, for which we will use the interaction picture expansion coefficients 

b t( ) = k U t( , t0 ) A  (3.5)k I 

The exact solution to UI was: 

U t, t0 1 τ I τ U τ , t0 (3.6)I (  )  = −
i
∫

t
d V  ( ) (  )  I = t0 
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For first-order perturbation theory, we set the final term in this equation UI (τ , t0 ) →1. Here we 

keep it as is. 

t
b t  k A − = 

i ∫ dτ k V  U  τ , 0 A  (3.7)k ( ) = I ( )  (  τ I t )
t0 

n n  =1, and recognizing k ≠ l,Inserting the projection operator ∑ 
n 

b t( ) = −
i ∑∫

t 
τ i kn V  b  kn  ( )  (3.8)d e ω τ  τk n = t0n 

Note, here Vkn is not a function of time.  Equation (3.8) expresses the occupation of state k in terms 

of the full history of the system from t0 → t  with amplitude flowing back and forth between the 

states n. Equation (3.8) is just the integral form of the coupled differential equations, that we used 

before: 

i= ∂
∂ 

b
t
k =∑ 

n 
eiωknt V b t  kn n ( )  (3.9) 

These exact forms allow for feedback between all the states, in which the amplitudes bk  depend on 

all other states.   

Now let’s make some simplifying assumptions.  For transitions into the continuum, let’s 

assume that transitions in the continuum only occur from the initial state.  That is, there are no 

interactions between the states of the continuum: k′k V  = 0 . This can be rationalized by 

thinking of this problem as a discrete set of states interacting with a continuum of normal modes. 

Moreover we will assume that the coupling of the initial to continuum states is a constant for all 

states k: A V k  = A V k′ = constant . 

So since you only feed from A  into k , we can remove the summation in (3.8) and 

express the complex amplitude of a state within the continuum as 

i
t 
τ ω τ  bbk = − =VkA ∫t0 

d ei kA
A ( )τ (3.10) 
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We want to calculate the rate of leaving A , including feeding from continuum back into initial 

state. From eq. (3.9) we can separate terms involving the continuum and the initial state:   

i= ∂ bA =∑eiωAkt VAk bk +VAA  bA (3.11)
∂t k ≠A 

Now substituting (3.10) into (3.11), and setting t0 = 0 : 

∂b 1 t 
kAA = −  2 ∑ VkA 

2 

∫ bA ( )τ eiω τ( −t ) dτ − 
=
i VAA  bA ( )t (3.12)

0∂t = k ≠A 

This is an integro-differential equation that describes how the time-development of bA  depends on 

entire history of the system.  Note we have two time variables for the two propagation routes: 

τ : A → k 
(3.13)

t : k → A

The next assumption is that bA  varies slowly relative to ωkA , so we can remove it from integral. 

This is effectively a weak coupling statement: =ωkA >>VkA . b is a function of time, but since it is in 

the interaction picture it evolves slowly compared to the ωkA oscillations in the integral.  

∂b ⎡ 1 
kAA = bA ⎢− 2 ∑ VkA 

2 

∫
t eiω τ( −t ) dτ − 

=
i VAA  

⎤
⎥ (3.14)

∂t ⎣ = k ≠A 
0 ⎦ 

1Now, we want the long time evolution of b, for times t >> , we will investigate the integration 
ωkA 

limit t →∞ . 

Complex integration of (3.14): Defining t′ =τ − t  dt  ′ = dτ 

kA kA∫
t eiω τ( −t ) dτ = ∫

t eiω t′ dt  ′ (3.15)
0 0 

The integral  lim T e ω ′dt′ is purely oscillatory and not well behaved. The
T →∞ ∫0 

+i t  

strategy to solve this is to integrate: 
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lim ∞ ( + )t′ dt′ = lim 1 
ε→0+ ∫0 

e iω ε  

ε→0+ iω ε+ 

= lim ⎛ ε 
+ i ω ⎞ (3.16)

+ ⎜⎝ω ε2 + 2 ω ε  2 + 2 ⎟⎠ε→0 

( )  1
⇒ +πδ ω − iP

ω 

In the final term we have used the Cauchy Principle Part: 

⎛ ⎞  ⎧P 
1 

= 
1 
x x ≠ 0 

(3.17)⎜ ⎟  ⎨ x 0 x = 0⎝ ⎠  ⎩ 

This leads to 

⎡ ⎤ 
⎢ 2 ⎞⎥∂b πA = bA ⎢− 2 ∑ V δ ω(  )  − ⎜  V + P2 

kA 
i ⎛
⎜ AA  ∑

VkA 

⎟∂t ⎢ = k ≠A 
kA = k ≠A Ek − EA 

⎟
⎥
⎥ (3.18) 

⎢ ����	���
 ⎝����	���
⎠⎥ 
⎣ term 1 term 2 ⎦ 

Term 1 is just the Golden Rule rate, written explicitly as a sum over continuum states instead of an 

integral  

δ ω A∑ ( k ) ⇒ ρ (Ek = EA ) (3.19) 
k ≠A =

w = dE  ρ ( )  ⎡2π VkA 
2 δ (Ek − EA )

⎤
⎥ (3.20)kA ∫ k Ek ⎢⎣ = ⎦ 

Term 2 is just the correction of the energy of EA  from second-order time-independent perturbation 

theory, ΔEA . 

2
k V  A 

EAΔ = A V A +∑ (3.21) 
k ≠A Ek − EA 

So, the time evolution of bA  is governed by a simple first-order differential equation 

∂bA ⎛ wkA i ⎞ = b −  − Δ  E (3.22)
∂t A ⎜

⎝ 2 = A ⎟
⎠ 
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Which can be solved with b 0 =1 to giveA ( )

⎛ kA i ⎞b t( ) = exp − w t 
− Δ  E t (3.23)A ⎜ = A ⎟

⎝ 2 ⎠ 

We see that one has exponential decay of amplitude ofbA ! This is a manner of irreversible 

relaxation from coupling to the continuum. 

− ωASwitching back to Schrödinger Picture, cA = bAe
i t , we find 

c t( ) = exp ⎡−⎛ wkA + i EA ′ ⎞ t⎤ (3.24)A ⎢ ⎜ ⎟ ⎥
⎣ ⎝ 2 = ⎠ ⎦ 

with the corrected energy E E  ′ ≡ +ΔE (3.25)A A

2and PA = cA = exp[−w t] . (3.26)kA 

The solutions to the TDSE are expected to be complex 

and oscillatory. What we see here is a real  dissipative 

component and an imaginary dispersive component. The 

probability decays exponentially from initial state. 

Fermi’s Golden Rule rate tells you about long times!   

Now, what is the probability of appearing in any 

k ?  Using eqn.(3.10):of the states 

kAb t( ) = −  
= 
i
∫0 

t
V eiω τ  b ( )τ τdk kA A 

− ⎛
⎜−

wkA t − = i ( A ′ − k )
⎞
⎟ 

=VkA 

1 exp  
⎝ 2 

E  E t  
⎠ (3.27)

E E  i w− ′ + = / 2k A kA 

1−c t( )  
= VkA − ′ 

A

=E E  i w+ / 2k A kA 

If we investigate the long time limit (t →∞) we find 

2V
PkA = (E E  − ′ 

k 

) 
A 
2 +Γ  2 / 4  

(3.28) 
k A
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with 	 Γ ≡ wkA ⋅ =  (3.29) 

The probability distribution for occupying states within the continuum is described by a Lorentzian 

distribution with a width given by the relaxation rate.  Note that the final states with maximum 

probability of being occupied is centered at the corrected energy of the initial state EA ′ . 
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