5.74 Introductory Quantum Mechanics II Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Nonlinear Spectroscopy Problems, Part 1 Spring 2009

1. Nonlinear Response Function

In analogy to the derivation of the linear response function, derive the quantum form of the second-order (nonlinear) response function.

2. Second Order Response Functions

Draw the Feynman and ladder diagrams for the two correlation functions of the second order nonlinear response, Q_1 and Q_2 , and write expressions for the phenomenological time-domain response functions of these systems and corresponding frequency-domain nonlinear susceptibility. Assume that you have a three level system for which the eigenstates of the system Hamiltonian are $|a\rangle$, $|b\rangle$, and $|c\rangle$, and also assume that $E_a < E_b < E_c$.

3. Nonlinear Experiments on an Anharmonic Vibration

Here we will consider two time-domain third-order nonlinear experiments on an anharmonic vibration. For high vibrational frequencies we will only occupy the ground state at equilibrium ($\rho_{eq} = |0><0|$), and the response can be represented by a three level system for the *n*=0, 1, and 2 vibrational states. For a weakly anharmonic oscillator, we will have only a very small shift between the fundamental transition frequency $\omega_{10} = \Omega$ and the n=1 \rightarrow 2 transition, $\omega_{21}=\Omega-\delta\Omega$.

We want to describe the behavior of two experiments shown here. Two pulses, both with frequency ω resonant with the $\Delta n = \pm 1$ transitions ($\omega \approx \omega_{10} \approx \omega_{21}$) and separated by τ are crossed at a small

angle, to generate two background free signals after the sample. The field E_1 incident along \mathbf{k}_1 preceeds the second pulse E_2 along \mathbf{k}_2 . On a plane after the sample the two signals \mathbf{k}_+ and \mathbf{k}_- are observed as equally spaced spots on either side of the transmitted beams. \mathbf{k}_+ lies next to the transmitted \mathbf{k}_1 .

- (a) Give the wavevector matching condition that leads to the signals radiated in the k₊ and k₋ directions. What is the frequency of each radiated signal?
- (b) Draw all Feynmann and Ladder diagrams that contribute to the k₊ and k₋ signals, assuming that the system starts in the ground state.
- (c) Write the correlation function corresponding to each diagram, assuming a phenomenological damping for propagation under H₀.
- (d) Now let's look more carefully at the signal **k**₋, for an inhomogeneously broadened system. Assume that the homogeneous damping of all coherences is $\Gamma = \Gamma_{10} = \Gamma_{21}$, and there are a Gaussian distribution of resonance frequencies

Also, for each member of the ensemble, $(\omega_{21})_i = (\omega_{10})_i - \partial \Omega$.

The integrated signal observed by a photodetector as a function of the pulse separation τ is

$$S(\tau) \propto \int_0^\infty d\tau_3 \left| P^{(3)}(\tau,\tau_3) \right|^2$$

Assuming that the experiment is performed with delta function pulses, derive an analytical expression for $S(\tau)$, and explain and interpret the features of this signal for the limits $\Delta >> \Gamma$ and $\Delta << \Gamma$. (To understand what you see it might help to plot $P^{(3)}$ as a function of τ_1 and τ_3 .) You can assume $\omega \approx \Omega >> \delta \Omega > \Gamma$. Also from harmonic oscillator selection rules, we can say $\mu_{21} = \sqrt{2}\mu_{10}$.

Nonlinear Spectroscopy Problems, Part 2

Spring 2009

4. 2D Spectrum of Coupled Oscillators

Calculate the 2D spectrum obtained from a third-order nonlinear experiment for a degenerate pair of coupled anharmonic vibrations. Imagine that you have two anharmonic oscillators described by the with vibrational levels in problem 3. For each oscillator, the transition energy for the v=0-1 transition is ε and the 1-2 transition is $\varepsilon - \Omega$. Then, these are coupled through a linear coupling of magnitude V: $V(a_1^{\dagger}a_2 + a_1a_2^{\dagger})$. Similar to before, we take $\Omega, V \ll \varepsilon$.

(a) Obtain the v=0,1,2 energy eigenvalues for the coupled oscillators. First explain why the matrix form of the Hamiltonian can be written as

$$H_{0} = \begin{pmatrix} 0 & & & \\ & \varepsilon & V & & \\ & V & \varepsilon & & \\ & & 2\varepsilon - \Omega & \sqrt{2}V \\ & & & 2\varepsilon - \Omega & \sqrt{2}V \\ & & & \sqrt{2}V & \sqrt{2}V & 2\varepsilon \end{pmatrix}$$

Where the rows refer to the states $|0,0\rangle, |0,1\rangle, |1,0\rangle, |0,2\rangle, |2,0\rangle, |1,1\rangle$. The states refer to the quantum number for each oscillator, and the $|1,1\rangle$ state is the combination band in which one quantum of excitation is in each oscillator. Show how the states correspond to the bands shown to the right.

- (b) Considering allowed resonances between the adjacent bands, draw the ladder diagrams that correspond to the R₂ and R₃ (rephasing) terms of the third-order nonlinear response. You can assume that only the following transitions (which change state by one quantum) are allowed: $\mu_{00,10}, \mu_{00,01}, \mu_{10,20}, \mu_{01,02}, \mu_{01,11}, \mu_{10,11}$. Also, you may assume that $\sqrt{2}\mu_{00,10} = \mu_{01,02}, \sqrt{2}\mu_{00,01} = \mu_{10,20}$, and $\mu_{01,11} = \mu_{10,11}$. Also write out the response obtained for each diagram setting τ_2 =0.
- (c) Fourier transform the responses in both the τ_1 and τ_3 variables, setting $\Gamma_{ij} \rightarrow 0$. This leads to each diagram contributing to a delta-function peak in a two dimensional spectrum plotted as a function of ω_1 and ω_3 . Show where the peaks are and how their positions are dictated by the parameters ε , V and Ω .