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Nonlinear Spectroscopy Problems, Part 1 

Spring 2009 


1. Nonlinear Response Function 

In analogy to the derivation of the linear response function, derive the quantum form of the 

second-order (nonlinear) response function.   

2. Second Order Response Functions 

Draw the Feynman and ladder diagrams for the two correlation 

functions of the second order nonlinear response, Q1 and Q2, and 

write expressions for the phenomenological time-domain response 

functions of these systems and corresponding frequency-domain 

nonlinear susceptibility. Assume that you have a three level 

system for which the eigenstates of the system Hamiltonian are 

a , b , and c , and also assume that Ea < Eb < Ec. 



We want to describe the behavior of two experiments shown here. Two pulses, both with frequency 

ω10 = Ω 

ω21= Ω−δΩ 
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3. Nonlinear Experiments on an Anharmonic Vibration 

Here we will consider two time-domain third-order nonlinear 

experiments on an anharmonic vibration. For high vibrational 2 
frequencies we will only occupy the ground state at equilibrium (ρeq = 

|0><0| ), and the response can be represented by a three level system 1 
for the n=0, 1, and 2 vibrational states. For a weakly anharmonic 

oscillator, we will have only a very small shift between the 0 
fundamental transition frequency ω10 = Ω and the n=1→2 transition, 

ω21=Ω−δΩ. 

ω resonant with the Δn = ±1 transitions (ω ≈ ω10 ≈ ω21) and separated by τ are crossed at a small 

angle, to generate two background free signals 

after the sample. The field E1 incident along 

k1 preceeds the second pulse E2 along k2. On 

a plane after the sample the two signals k+ and 

k− are observed as equally spaced spots on 

either side of the transmitted beams.  k+ lies 

next to the transmitted k1. 

(a) Give the wavevector matching condition that leads to the signals radiated in the k+ and k− 

directions. What is the frequency of each radiated signal? 

(b) Draw all Feynmann and Ladder diagrams that contribute to the k+ and k− signals, assuming 

that the system starts in the ground state. 

(c) Write the correlation function corresponding to each diagram, assuming a phenomenological 

damping for propagation under H0. 

(d) Now let’s look more carefully at the signal k−, for an inhomogeneously broadened system. 

Assume that the homogeneous damping of all coherences is Γ=Γ10 = Γ21, and there are a 

Gaussian distribution of resonance frequencies 
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The integrated signal observed by a photodetector as a function of the pulse separation τ is 

23S τ dτ P( ) (τ τ  , 3 ) .( ) ∝ ∫
∞ 

30 

Assuming that the experiment is performed with delta function pulses, derive an analytical 

expression for S(τ), and explain and interpret the features of this signal for the limits Δ>>Γ 

and Δ<<Γ. (To understand what you see it might help to plot P(3) as a function of τ1 and τ3.) 

You can assume ω ≈ Ω >  δ . Also from harmonic oscillator selection rules, we can >  Ω > Γ

say μ21 = 2μ10 . 



 

Nonlinear Spectroscopy Problems, Part 2 

Spring 2009 

4. 2D Spectrum of Coupled Oscillators 

Calculate the 2D spectrum obtained from a third-order nonlinear experiment for a degenerate 
pair of coupled anharmonic vibrations.  Imagine that you have two anharmonic oscillators 
described by the with vibrational levels in problem 3.  For each oscillator, the transition energy 
for the v=0-1 transition is ε and the 1-2 transition is ε −Ω . Then, these are coupled through a 

V a† †linear coupling of magnitude V: ( 1 2a + a1a2 ) . Similar to before, we take Ω,V <<  ε . 

(a) Obtain the v=0,1,2 energy eigenvalues for the coupled oscillators.  First explain why the 
matrix form of the Hamiltonian can be written as 

⎛0 ⎞ 
⎜ ε V ⎟ 
⎜ ⎟ 
⎜ V ε ⎟ 

H0 = ⎜ ⎟ .
⎜ 2ε −Ω  2V ⎟ 
⎜ ⎟ 
⎜ 2ε −Ω  2V ⎟ 
⎜ 2V 2V 2ε ⎟⎠⎝ 

Where the rows refer to the states 0,0 ,  0,1  ,  1,0 ,  0, 2 ,  2,0 ,  1,1  . 2 
The states refer to the quantum number for each oscillator, and the 

11,1 state is the combination band in which one quantum of excitation 

is in each oscillator. Show how the states correspond to the bands 
shown to the right. 0 

(b) Considering allowed resonances between the adjacent bands, draw the ladder diagrams 
that correspond to the R2 and R3 (rephasing) terms of the third-order nonlinear response.  
You can assume that only the following transitions (which change state by one quantum) 
are allowed: μ00,10 , μ00,01 , μ10,20 , μ01,02 , μ01,11 , μ10,11 . Also, you may assume that 

2μ00,10 = μ01,02 , 2μ00,01 = μ10,20 , and μ01,11 = μ10,11 . Also write out the response obtained 

for each diagram setting τ2=0. 

(c) Fourier transform the responses in both the τ1 and τ3 variables, setting Γij→0. This leads 
to each diagram contributing to a delta-function peak in a two dimensional spectrum 
plotted as a function of ω1 and ω3. Show where the peaks are and how their positions are 
dictated by the parameters ε, V and Ω. 




