
VII. Central Potentials 
 
Before going any further with angular momentum, it is best to begin 
using the relations we already have so that we can get some idea 
what they are good for.  Perhaps the best application of the angular 
momentum eigenfunctions we dealt with in the previous section 
comes when one deals with a spherically symmetric (or central) 
potential.  In this case, the potential energy is only a function of the 
distance r  to the origin, and the knowledge we already have will tell 
us a great deal about the eigenstates of the system irrespective of 
the particular potential. 
 

a. Spherical Polar Coordinates 
 
Since we are dealing with a potential that is a function only of the 
distance r  to the origin, it is by far preferable to work in a set of 
coordinates where r  is one of the basic variables, rather than some 
function of zyx ,, .To this end, we need to convert our equations to 
spherical polar coordinates - φθ ,,,, rzyx → . In most math textbooks, 
φ  is defined to be the angle relative to the z  axis while the vast 
majority of quantum mechanics 
texts use θ in this capacity.  We will 
use the latter definition, but be 
careful that  any equations taken 
from other sources use this same 
convention!  Here are some useful 
relations in spherical polar 
coordinates:  
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b. Central Potentials 
 
For an arbitrary potential )(rV , we can write 
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At this point, we convert the equations to natural units by choosing 
our unit of length and unit of mass so that 1== m� .  Note that this 
leaves us one free standard unit (time, or, equivalently, energy).  It is 
convenient to fix this dimension based on the problem at hand; for 
example, in a harmonic oscillator, it is useful to choose the energy so 
that 1=ω� , while for the Coulomb interaction it is useful to choose the 
unit of electron charge to be that of one electron.  These units are 
merely out of convenience and in the end, once we have calculated 
an observable (such as the position) we will need to convert the result 
to a set of standard units (such as meters).  The main benefit at the 
moment is that it removes the relatively unimportant factors of �  and 
m  from our equation, so that in natural units: 
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where the second equality just reinforces the gory details wrapped up 
in the Laplacian operator. 
 
 
 



c. Orbital Angular Momentum Operators 
In order to see what angular momentum has to do with this, we need 
to express the angular momentum operators in spherical polar 
coordinates, as well. In this case, the relevant type of angular 
momentum is that of the particle orbiting around the origin: 

�
�

�
�
�

�

∂
∂−

∂
∂−=∇−×=×=

φθθ θφ sin
1

ˆˆˆ eeeprL iir r  

 
Plugging in our expressions for { }φθ ee ,  from above: 
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Further, after some algebra, one can show 
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At this point we notice that 2L̂  plays a conspicuous role in the 
Hamiltonian: 
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Hence, all of the angular dependence of Ĥ is contained in 2L̂  and we 
immediately conclude that: 

[ ] [ ] 0ˆ,ˆ0ˆ,ˆ == zLHH 2L  

which means that the eigenfunctions of Ĥ  are also angular 
momentum eigenfunctions!  That is, for any fixed r , 
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Of course, we really want to know what the eigenfunctions look like in 
real space rather than writing them as abstract vectors. First of all, 
notice that none of the angular momentum operators depend on r , 
and so the eigenfunctions depend only on the angles θ  and φ .  We 
will denote these functions by 

( ) mlY m
l ,,, φθφθ ≡  

where l  indexes the eigenvalue of 2L̂  and m  indexes the zL̂  
eigenvalue.  Then, we can write 

( ) ( )φθψφθ ,,, m
l

m
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The radial function will depend on the form of )(rV , but the angular 
parts are universal – they are just the spatial representation of the 
orbital angular momentum eigenfunctions.  They are called spherical 
harmonics and we proceed to define their precise form 

d. Spherical Harmonics 
The eigenvalue equations we derived previously for angular 
momentum now become partial differential equations that are not 
always easily solved. The zL̂  equation is trivial to solve: 
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Unfortunately, the equations for ( )θm
lP  are more difficult. To solve for 

the m
lP ’s, we follow two steps: 

1) Recall that ( ) .0,ˆ ==
+ φθlm

lYL   Or, in differential language: 
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2) Using this simple result for lm = , we can generate the 
spherical harmonics for other values of m  by repeated 
application of the lowering operator: 
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The second step is rather tedious, and so we simply state that the 
result  
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These are the spherical harmonics and they are the eigenfunctions of 

2L̂  and zL̂ . The normalization constant has been chosen so that 
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that is, we have chosen it so that the spherical harmonics are 
orthonormal. 
 
Now, one important constraint on these solutions is that l  must be 
an integer.  To see this, note that half-integer l  would imply half-
integer m .  In this case we have a problem, because as we seep 
around an angle πφ 2=∆  the wavefunction needs to return to its 
original value; that is, it needs to be periodic.  However, if m  is half-
integer, this is not true.  For example, if 2

1=m , 
( ) 2/2/2/2/2 φφπφπφ iiiii eeeee ≠−==+  

Because the half integer solutions do not obey the proper boundary 
conditions, they must be discarded. 
 
Hence, even though our derivation above seemed to indicate that 
angular momentum could be half-integer, for the special case of 
orbital angular momentum, this is not possible.  We will see shortly 
that half-integer angular momenta are crucial for the description of 
particle spins.  In any case, this shows how the general quantization 
conditions ...,1,,0 2

3
2
1=l  and lllm ,...1, +−−= can be even further 

restricted when one is dealing with particular types of angular 
momentum.  We will never have an l  that is not an integer or half 



integer, but often only certain integer or half integer values will be 
permissible. 
 

e. The Radial Equation 
 
Combining our expression for the spherical harmonics with the 
previous results, we find that the eigenfunctions for any central 
potential can be written 
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that is, the three dimensional wavefunction is separable into a 
product of three one dimensional wavefunctions.  This is not 
generally the case, and is one of the particularly nice properties of 
spherically symmetric potentials.  The radial function will generally 
depend on the form of the potential, but it will obey the equation: 
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This equation can be solved  exactly for only a few cases (the 
harmonic oscillator and the Coulomb potential are the most notable).  
Notice that the eigenvalue equation depends on the value of l , the 
quantum number for 2L̂ , but not m , which indicates the projection of 
the angular momentum along the z  axis.  Hence the m

lR ’s do not 
actually depend on m .  Further, we anticipate the appearance of 
another quantum number (call it n ) that indexes the solutions to this 
radial equation.  Hence, we replace ( ) ( )rRrR nl

m
l →  in what follows. 

 
The radial equation can be simplified further if we look at the equation 
satisfied by the functions ( ) ( )rrRr nlnl ≡ρ : 
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where, on the right, we have noted that the energies also depend on 
n  and l .  Notice that resemblance of this equation to the 1D 
Schrödinger equation.  Indeed, if we define the effective potential by 
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then this is a 1D Schrödinger equation, with the effective potential 
above.  Note, however, that the boundary conditions are different 
than the typical 1D case: 

( ) ( ) 000 =∞= nlnl ρρ  
Because the additional term in effV arises from the angular motion of 

the particle around the nucleus, it is usually called the “centrifugal 
potential”. 
 

f. Hydrogen-like Atoms 
 
We are now ready to specialize to the particular case of the 
hydrogen-like atoms – that is, atomic ions with only one electron (H, 
He+, Li+2…). First, we will make the “infinite mass” approximation for 
the nucleus -  we place the it at the origin and assume it never moves 
because it is much more massive than the electron.  This is a fairly 
good approximation, since 1800/ ≈ep mm , but if one wishes to be 

more precise, one merely needs to replace the electron mass with the 
reduced mass ( ) 111 −+=

Ne mmµ in what follows.  Hence, the nucleus only 

presents a potential in which the electron moves: 
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where e−  is the charge on the electron and Ze+ is the charge of the 
nucleus .  At this point, we move from “natural units” ( 1== em� )to 
“atomic units” ( 1=== eme� ).  We can now explicitly state our 
fundamental units of mass, length and energy: 
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The latter two units give the typical distance an electron is from the 
nucleus and a typical energy for an electron in a Coulomb potential. 
 
Hence, we want to solve the equation 
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Like the equation for ( )θm
lP , this is fairly tedious to solve, and we 

merely outline the steps 
 
1) Notice that for large r , the potential terms vanish and we 

just have 
( ) Er

nl er 2−±≈ρ  
One must take the ‘-‘ solution, since otherwise the 
wavefunction will not go to zero at infinity.  

 
2) Write  

( ) Er
nl erfr 2)( −−=ρ  

and then expand )(rf  in a power series about the origin. 
 

3) Insert nlρ  into the Schrödinger equation above and 
equate each term in the power series expansion for )(rf  
to zero. 

 
After a significant amount of algebra, one finds that ( nZr /2=ξ ) 
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which are known as the associated Laguerre polynomials.  Examples 
for low values of n  and l  are reproduced in many textbooks. 
 
There are two other very interesting things that come out of the 
algebra that leads up to the Legendre polynomials: 
 

1) One finds that solutions only exist if nl < .  Hence, while a 
Hydrogenic atom can only have any integer angular 
momentum, these values are further restricted for fixed n .  
We typically denote the l  states as ‘s’, ‘p’, ‘d’, ‘f’, ‘g’, ’h’ … 
orbitals, for l =0,1,2,3,4,5….  Hence, we have 1s, 2s, 2p, 3s, 
3p, 3d, etc orbitals, but not 1d orbitals or 3f orbitals. 

2) The energies of the Hydrogenic atom are 
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were known experimentally long before Schrödinger ever 



came along.  The interesting thing here is that the energies 
do not depend on l !  This is a feature peculiar to Hydrogenic 
potentials and is related to an additional symmetry 
possessed by the Coulomb potential.  This is termed an 
“accidental” degeneracy of the levels. 

 
Finally, before moving on, we note that these are only the bound 
states of the hydrogen atom.  There are also positive energy states 
that are oscillatory instead of decaying.  We will not concern 
ourselves with these states, except to say that the bound 
eigenfunctions by themselves are not a complete basis – only if the 
unbound solutions are included is completeness reached. 
 

g. Electron Spin 
 
Up to this point, we have been treating the electron as a structureless 
particle that has a mass and an electric charge.  However, the 
electron actually has intrinsic angular momentum, as we now show. 
 
It turns out that the electron has a magnetic moment.  This can be 
measured experimentally in a Stern-Gerlach experiment.  Here, one 
takes a beam of atoms that have one excess electron beyond a filled 
shell (most often Silver, but one could use Sodium, as well).  The 
beam is passed through an inhomogeneous magnetic field.  If the 
electron has a magnetic moment, the classical force on the electron 
is B∇⋅≈ mF , where m  is the magnetic moment and B  is the 
magnitude of the magnetic field.  Thus, particles with different 
moments will be deflected differing amounts by the magnetic field.  
When one performs the experiment, one observes:  
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Thus, the magnitude magnetic moment of the electron is fixed, and 
the direction it points is quantized and can take on one of two values. 
 
Now, how does this lead us to conclude that the electron has an 
intrinsic angular momentum?  There are two arguments that lead to 
this conclusion: 
 

1) Classically, magnetic moments are always due to circulating 
currents – this is known as Ampere’s hypothesis.  Thus the 
intrinsic magnetic moment of the electron leads us to 
postulate an associated angular momentum, called spin.  
The fact that there are only two possible orientations for the 
spin implies that the electron is spin-1/2 , for then the two 
orientations correspond to 2

1±=sm .  Classically, one 
associates the magnetic moment with the angular 

momentum via Sm
c2
1−= . However, this turns out to be 

wrong for the electron; a full relativistic calculation shows 
that a large number of small corrections to this formula exist 
and the aggregate effect of these terms renormalizes the 

effective magnetic moment of the electron so that Sm
c

g

2
−= , 

where ...0022.2=g , or, for all practical purposes,  2=g . 
 
2) Again, classically, a magnetic moment moving in a potential 

experiences a force ( )rpm V∇×⋅ .  For the central potentials 
we are dealing with, the gradient of the potential will always 
point in the r  direction.  Thus the force is proportional to 

Lmrpm ⋅∝×⋅ .  Now the different components of L̂  do not 
commute, and so it is clear that if we add the appropriate 
quantum correction for the interaction of the magnetic 
moment with the potential ( Lm ˆˆ ⋅ ) angular momentum will no 
longer be conserved!  This can be ameliorated if we assume 
the electron carries an intrinsic angular momentum and that 
it is the sum of the spin and orbital angular momenta that is 
conserved. 

 



For these reasons, we conclude that the electron has an intrinsic 
angular momentum of magnitude 1/2.  We can thus work out the 
commutation relations and eigenvalue relations for spin by 
specializing our general results for angular momentum.  First, there 
are the eigenvalue equations: 
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it is conventional to make the definitions 
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Then, in the βα , -basis, the spin operators take the form of simple 
2x2 matrices: 
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One can easily verify that these matrices satisfy the correct 
commutation relations.  There are a lot of things one can learn about 
quantum mechanics even from a system as simple as this.  But for 
the time being, we will be content with these relationships. 
 
How does all this affect our previous calculations that neglected spin 
entirely?  Thankfully, the effects are rather mild.  To a good 
approximation, we can simply think of the spin as an additional 
degree of freedom.  Operators that act in coordinate space will 
commute with the spin degree of freedom, and vice versa. Since 
none of our Hamiltonian operators, to this point, have involved spin, 
s and sm  have been good quantum numbers.  Hence, we can simply 
think of each wavefunction as actually representing one of two 
degenerate components that are identical in coordinate space and 
differ only in spin space – one has spin α , the other spin β .  

 
However, our previous arguments indicate that the Hamiltonian for a 
central potential should contain a term proportional to 

LSLm ˆˆ
2
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thus, there is an interaction between spin and orbital angular 
momentum.  In order to deal with this, it is advantageous to first 
consider how one deals with multiple angular momenta, in general.   


