
 
 

1. Consider a diatomic molecule with two electronic states, 1  and 

2  and a bond length R.   The Hamiltonian for this system in 

the diabatic basis is given by: 
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 where the relevant interactions are given by 
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Plot the associated adiabatic potentials and non-adiabatic 
coupling.  Describe what you see. 

 

The adiabatic electronic states diagonalize the potential 

matrix: 
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and the adiabatic energies are the eigenvalues of the 

adiabatic states. A little work with Mathematica gives the 

eigenvalues 
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  Thus, the non-adiabatic coupling between the two states is: 
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If we plot the eigenenergies (along with the diabatic states), we find: 

 
Thus, there are two crossings in the diabatic picture (around R=±1.5) 

which turn into avoided crossings in the adiabatic picture.  Meanwhile, 

the diabatic coupling looks like: 

 
Clearly, the diabatic coupling is large near the two avoided crossings, 

indicating that the adiabatic states change rapidly around these points. 
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2. A Jahn-Teller distortion occurs when a molecule that would 
have a degenerate electronic configuration if the nuclei were 
arranged symmetrically instead distorts so that the electronic 
degeneracy is lifted and the energy is lowered.  This problem 
concerns a model of Jahn-Teller distortion.  Consider a system 

with two low-lying diabatic electronic states, 1  and 2 , and two 

vibrational modes, x  and y .  The Hamiltonian for this molecule 

is: 
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where the electronic matrix elements are 
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In this model, the origin ( 0== yx ) corresponds to the 

symmetric configuration and the x  and y  modes correspond to 

vibrational motions that distort the molecule away from the  
symmetric geometry.  Note that the first and second diabatic 
states are degenerate, as advertised. 
  

a) Determine the adiabatic electronic energies of this 
potential.  Express the result in terms of polar coordinates 

θρ cos→x  and θρ sin→y .  Does this model properly 

describe a distorted molecule?  If so what is the 
magnitude of the distortion (in terms of ω  and k )? What 
is the energy lowering due to the distortion?  What 
happens to the two surfaces at the symmetric geometry 
( 0=ρ )? 

 

The adiabatic electronic states diagonalize the potential 

matrix: 
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and the adiabatic energies are the eigenvalues of the 

adiabatic states. A little work with Mathematica gives the 

eigenvalues 
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Hence, the effect of the coupling is to take the two 

degenerate diabatic states and split them into two shifted 

harmonic oscillators.  Pictorially, the two surfaces look like: 

 

 

 

 

 

 

 

 

 

 

Note that the surfaces are rotationally symmetric (the 

potential just depends on    ρρρρ). Since ρρρρ=0 is the symmetric 

geometry, the shifted oscillators do, indeed describe a 

distorted molecule, at least for the lower surface (which is 

what the Jahn-Teller theorem applies to).  The magnitude 

of the distortion is the distance the oscillator minimum is 

from the symmetric geometry (k/ωωωω) and the energetic 

stabilization is the energy at the minimum of the lower 

surface (-k
2
/2ωωωω).  At the symmetric geometry, the picture 

shows that there is a conical intersection, and the two 

surfaces cross (i.e. they are degenerate).  

 
b) Determine the adiabatic electronic states. Use these 
states to compute the non-adiabatic coupling.  Make sure 
to choose the relative phase of the two states so that the 

diagonal part is zero: 
0=∇=∇ upperupperlowerlower ψψψψ

. 
 
c) What happens to the nonadiabatic coupling at the 
symmetric geometry?  Note that the physical state of the 
molecule is the same at the polar points ( )θρ ,  and 

( )πθρ 2, +  since this just corresponds to a 360 degree 



rotation.  Show that the adiabatic wavefunctions at ( )θρ ,  

and ( )πθρ 2, +  are not the same.  Could this have any 

experimental consequences? 
 

 
 
If you ask Mathematica to give you the eigenvectors of the 

potential matrix (and are careful to make sure they are 

normalized), you get the two states: 
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Unfortunately, an equivalent set of eigenvectors is obtained 

if you multiply the above vectors by 2/θi
e

− : 








−
=








=

−−−+ 2/

2/

2/

2/

2

1

2

1
θ

θ

θ

θ

ψψ
i

i

i

i

e

e

e

e
 

Both expressions are correct. However, the second set of 

states is the traditional choice because it makes the diagonal 

elements of the non-adiabatic coupling zero: 
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The first states are single-valued for all θθθθ while the second 

set acquires a “-“ sign on going from θθθθ to θ+2πθ+2πθ+2πθ+2π.  This minus 

sign problem occurs anytime there is a conical intersection.  

In order to have a single valued wavefunction overall, the 

extra phase in the adiabatic electronic wavefunction is 

exactly cancelled by an extra phase (of the opposite sign) in 

the nuclear part – the so-called “Berry’s phase”.  The extra 

phase required is different on the two different surfaces, 

and so for non-adiabatic processes the phase shows up as an 

experimentally observable interference pattern. 

 

To calculate the non-adiabatic coupling, we need +− ∇ψψ .  

This can be computed in one of two ways; we can either re-

write the eigenvectors in terms of x and y and then compute 



the gradient in those coordinates, or we can use the 

expression for ∇  in polar coordinates (which can be found 

in the back of CTDL): 
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Taking the second route and remembering to take the 

conjugate transpose of the bra vector, 
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where it is important to note that this is still a vector, even 

though the ρρρρ component is zero.  The direction of the non-

adiabatic coupling tells us the direction along which the 

adiabatic wavefunction has its maximum rate of change.  In 

this case, the change is always in the θ θ θ θ direction, so the 

wavefunction changes as we circle around the origin.  At, 

the origin ρ=0ρ=0ρ=0ρ=0, and the non-adiabatic coupling is infinite.  

This reflects the fact that, for small ρρρρ, the adiabatic 

wavefunctions change rapidly as one makes a tiny circuit 

around the origin.  For example, for θ=0θ=0θ=0θ=0  
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Hence near the origin the adiabatic wavefunctions change 

infinitely rapidly and the non-adiabatic coupling blows up.  

This signals the catastrophic breakdown of the Born-

Oppenheimer approximation in this region. 



3. Use simple molecular orbital theory to obtain energy 
expressions for the lowest two singlet states of H2 in terms of 
the basic quantities: 

**
1

***
1

***

*
1

*
1

12

22

12

122

12

12

12

111

σσσσσσσσσσε

σσσσσσσσσσε

r
J

r
Kh

r
J

r
Jh

≡≡≡

≡≡≡

 

Use the attached table to evaluate several values of the H-H 
bond length (R). Does MO theory obey the non-crossing rule?  
How can you justify your results? 
 

First, we write down the two lowest singlet states, in the 

convenient space-times-spin form: 
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Next, we determine the energy expressions in terms of the 

integrals we’ve been given (omitting some algebra here): 
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If we plot these as a function of R, we find: 

 
At this point I have to apologize; I gave you the wrong 

integrals here.  The numbers I’ve labeled are actually  
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That is, they include some average piece of the electron-

electron repulsion.  As a result, all the energies above are 

too high.  However, the no crossing rule is still obeyed (an 

would have been if we used the correct integrals, as well) 

and we see that the excited state dissociates to excited H-

atom fragments. We can see this from the wavefunction, 

because 
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So, the first excited singlet contains only ionic terms and 

dissociates exactly to H+ … H-.  You would have been able 

to tell this from the picture if I had given you the correct 

integrals. 


