5.73 Problem Set 5

1. Consider a system that evolves under the Hamiltonian $\hat{H} = \omega \hat{I}_z$.

Compute the average values $\langle \hat{J}_x(t) \rangle$, $\langle \hat{J}_y(t) \rangle$ and $\langle \hat{J}_z(t) \rangle$ given fixed initial values for each average. What is the vector $\vec{J} = \langle \hat{J}_x(t) \rangle \vec{i} + \langle \hat{J}_y(t) \rangle \vec{j} + \langle \hat{J}_z(t) \rangle \vec{k}$ doing? What aspects of the evolution are quantum mechanical and what aspects are classical?

2. Consider a particle with the wavefunction:

$$\langle r, \theta, \phi | \psi \rangle = N R(r) (1 - \cos^3 \theta) \sin \theta \cos \phi$$

where N is a normalization constant.

- a. If one performs a measurement of $\hat{\mathbf{L}}^2$ and \hat{L}_z for this state, what are the possible outcomes?
- b. The dipole moment operator is $\hat{\mu} = e\hat{r}$. Does this state possess a dipole moment along the x, y or z directions? You need not compute the values of the x, y or z components; merely determine if they are zero.
- c. What about the quadrupole moment $\hat{M} = e(3\hat{z}^2 \hat{r}^2)$? Is it non-zero?
- 3. The idea behind Lewis Dot Structures is that bonds are formed when two S=1/2 electrons from different atoms "pair" to form a state with $S_{tot}=0$. First,

notice that for an isolated pair of electrons, this is accomplished by an "exchange" Hamiltonian

$$\hat{H} = J\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$$

where $\hat{\mathbf{S}}_i$ and $\hat{\mathbf{S}}_j$ are the spin operators of the two electrons and *J* is a constant that determines the strength

of the "bond".

In this problem, we will consider a Lewis-dot model of the bonding in cyclobutadiene. We are only interested in the 4 π -electrons, so we can write

 $\hat{H} = J\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + J'\hat{\mathbf{S}}_2 \cdot \hat{\mathbf{S}}_3 + J\hat{\mathbf{S}}_3 \cdot \hat{\mathbf{S}}_4 + J'\hat{\mathbf{S}}_4 \cdot \hat{\mathbf{S}}_1$

where, as the picture implies, $J' \ge J$.

- a) Compute the eigenfunctions and eigenvalues of this Hamiltonian for J = 1, J' = 2.
- b) Compute the eigenfunctions and eigenvalues of this Hamiltonian for J = J' = 3/2.
- c) Develop a measure for the "strength" of the bond and show that in a) the C_1 - C_2 and C_3 - C_4 bonds are weaker than the other two while in b) the bonds are all equivalent.
- 4. Consider the low energy reaction of atomic hydrogen with singlet oxygen to yield hydroxyl radical and atomic oxygen: H·+O₂^{*}→ [HO₂·]→ ·OH+O:

At low energy, the transition state complex $[HO_2]$ has no rotational angular momentum. Given that the H atom is spin-1/2, O_2^* is spin-0, OH is spin-1/2, O is spin-1 and total angular momentum is conserved, what are the relative yields of O atoms with $m_s=+1,0,-1$? That is, will one of the m_s values be preferred over the others? Would it be possible for the products to be OH($m_s=+1/2$)+O($m_s=+1$)? Why or why not?

5. Consider an anharmonic potential of the form

$$V(\hat{q}) = \frac{1}{2}k\hat{q}^2 - \alpha\hat{q}^3 + \beta\hat{q}^4$$

use perturbation theory to compute the eigenvalues of this potential to lowest non-vanishing order in α and β . [Hint: the cubic and quartic terms will contribute at different orders] Express your result in the standard vibrational form:

 $E(n) = E_0 + \omega_e (n + \frac{1}{2}) - \omega_e x_e (n + \frac{1}{2})^2 + \omega_e y_e (n + \frac{1}{2})^3$ Compare this result to the variational prediction you made in a previous problem set (which assumed the particular values $\alpha = .045$, $\beta = .00107$). Is perturbation theory accurate for this potential?