5.73 Problem Set 2

Due Friday, Sept. 30

1. Let $\left|\psi_{n}\right\rangle$ be the eigenstates of some Hermitian operator, \hat{O}.
a. Consider the operator $\hat{P}=\frac{1}{2}\left(\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right|+\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right)$. Compute \hat{P}^{2}. Is \hat{P} idempotent?
b. Consider $\hat{R}=\left|\psi_{m}\right\rangle\left\langle\psi_{n}\right|$. Under what conditions is this operator Hermitian?
c. Consider a second Hermitian operator, \hat{O} '. Under what conditions is $\hat{O}^{\prime} \hat{O}$ Hermitian? Are there any special properties of the commutator $\left[\hat{O}^{\prime}, \hat{O}\right]$?
d. Consider two Hermitian operators, \hat{A}_{1} and \hat{A}_{2} that do not commute with each other, but do commute with \hat{O} (i.e. $\left[\hat{A}_{1}, \hat{O}\right]=\left[\hat{A}_{2}, \hat{O}\right]=0 \neq\left[\hat{A}_{1}, \hat{A}_{2}\right]$.) Show that \hat{O} must have a degenerate eigenvalue. That is, show that two of the eigenvalues, o_{n} and o_{m}, corresponding to different states are the same.
2. Consider a operator, \hat{O}, that depends on a parameter, λ. For example, the operator might be a Hamiltonian that depends on an electric field strength, λ.
a. Consider the λ-dependent eigenvalue equation:

$$
\hat{O}(\lambda)|\psi(\lambda)\rangle=o(\lambda)|\psi(\lambda)\rangle
$$

Show that one can compute $\frac{d o(\lambda)}{d \lambda}$ without knowing $\frac{d|\psi(\lambda)\rangle}{d \lambda}$. Thus, one can determine the change in the eigenvalue without knowing the change in the eigenstate. Under what conditions would $\hat{O}(\lambda)$ commute with $\hat{O}\left(\lambda^{\prime}\right)$?
b. Now, consider the exponential of $\hat{O}(\lambda)$, which is defined through its power series:

$$
e^{\hat{O}(\lambda)} \equiv 1+\tau \hat{O}(\lambda)+\frac{1}{2} \tau^{2} \hat{O}^{2}(\lambda)+\ldots .
$$

We will later see that the exponential is closely related to time evolution in QM and here τ plays the role of time.

Show that $\hat{O}(\lambda)$ commutes with its exponential. That is, show that $\left[\hat{O}(\lambda), e^{\hat{0}(\lambda)}\right]=0$.
c. One often wants to compute the derivative of the exponential with respect to the external parameter λ. Show that

$$
\frac{d}{d \lambda} e^{\imath \hat{O}(\lambda)}=\int_{0}^{\tau} e^{a \hat{o}(\lambda)} \frac{d \hat{O}(\lambda)}{d \lambda} e^{(\tau-\alpha) \hat{O}(\lambda)} d \alpha
$$

Do not assume that $\hat{O}(\lambda)$ commutes with $d \hat{O}(\lambda) / d \lambda$. [Hint: Show that both sides (\hat{X}) satisfy the first order differential equation (in τ):

$$
\frac{d \hat{\mathrm{X}}}{d \tau}-\hat{X} \hat{O}(\lambda)=e^{\hat{\vartheta}(\lambda)} \frac{d \hat{O}(\lambda)}{d \lambda}
$$

Then, if the two sides are equal at $\tau=0$, they must be equal for all τ.]
3. The following concern a diatomic molecule with a simple harmonic potential between the atoms $V(\hat{x})=\frac{1}{2} k \hat{x}^{2}$. Assume $\hbar=m=1$ and denote the eigenstates of the Hamiltonian by $|n\rangle$.
a. Find the linear combination of $|0\rangle$ and $|1\rangle(|\varphi\rangle=a|0\rangle+b|1\rangle)$ for which the average value of \hat{x} is maximum. Repeat this process for a linear combination of $|0\rangle$ and $|2\rangle$. What are the maximum values possible in each case? Which works better?
b. Same as b., but this time maximize the average value of \hat{x}^{2}. What conclusion do you draw from these two calculations?
c. Now, assume that the molecule (starting in the vibrational and electronic ground state) is instantaneously promoted to an excited electronic state (say by a laser). In this state the potential felt by the atoms is $V(\hat{x})=\frac{1}{3} k \hat{x}^{2}$. What is the average energy of the atoms in the new state? Here, we are making use of the Franck-Condon approximation by assuming the electronic state adjusts much more quickly than the nuclei.
4. For any one dimensional (1D) system, if we turn on a magnetic field of strength B perpendicular to the 1D axis, the resulting 1D Hamiltonian is:

$$
\hat{H}_{B}=\hat{H}+B \hat{p} .
$$

Assume that we have a harmonic oscillator of frequency ω and we subject it to a perpendicular magnetic field, B.
a. What are the observable energies for the system now that the field is on? You should determine these energies analytically (i.e. without assuming a numerical value for B).
b. We make a measurement of the energy and find a particular value E_{n}. Next, we measure the momentum. If we perform this sequence of measurements many, many times (i.e. we measure the energy and find E_{n} and then measure the momentum) what will be the average outcome? Your expression should be correct for any choice of B, n.[Hint: you should not need any explicit wavefunctions to do this.]

