1. CKD 1.2

The units in the preceding problem were in kJ/mole, which is an example of SI units. Give values for the following quantities both in kJ/mole and in the indicated alternative units in parentheses:

(a) heat capacity of liquid water at 15 °C and 1 atm (cal mole⁻¹ K^{-1}): $Cp = 7.5 \times 10^{-2} \text{ kJ mol}^{-1} \text{K}^{-1}$ $1 \text{ cal} = 4.186 \times 10^{-3} \text{ kJ}$ $Cp = 18 \text{ cal mol}^{-1} \text{K}^{-1}$

(b)vibrational fundamental frequency of $H^{35}Cl$ (cm⁻¹):

$$v_{o} = 2990 \text{ cm}^{-1}$$

$$2990 \text{ cm}^{-1} \times \left(\frac{1.986 \text{ x} 10^{-16} \text{ kJ}}{1000 \text{ cm}^{-1}}\right) \times \text{N}_{a} = v_{o} = 35.8 \text{ kJ mole}^{-1}$$

(c) ionization potential of H atom (eV):

$$\frac{IP = 13.6 \text{ eV}}{13.6 \text{ eV} \times \text{N}_{\text{a}} \times \left(\frac{1.602 \times 10^{-22} \text{ kJ}}{1 \text{ eV}}\right) = \boxed{1.31 \times 10^3 \text{ kJ mole}^{-1}}$$

(d)RM.S. average translational kinetic energy of Br_2 at 300 K (ergs molecule⁻¹):

$$KE_{RMS} = \frac{3}{2}RT = \frac{3}{2} \times .00831451 \text{ kJ mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} = \boxed{3.74 \text{ kJ mole}^{-1}}$$

3740 J mole⁻¹ ×
$$\frac{1000 \text{ g}}{1 \text{ kg}}$$
 × $\left(\frac{100 \text{ cm}}{1 \text{ m}}\right)^2$ × $\frac{1}{N_a}$ = $6.21 \times 10^{-14} \text{ ergs molecule}^{-1}$

(e) energy of CO_2 laser photons having a wavelength of 10.59 μ m (Hz):

$$\frac{h c}{10.59 x 10^{-6} m} \times N_a \times \frac{kJ}{1000 J} = \boxed{11.3 kJ mole^{-1}}$$
$$\frac{c}{10.59 x 10^{-6} m} = \boxed{2.83 x 10^{13} Hz}$$

2. CKD Problem 1.3

a) Derive the integrated rate equation for a reaction of 3/2 order in a single reactant. Derive the expression for the half-life of such a reaction.

Assume a reaction of the form:

 $A \rightarrow B$, with a rate expression,

$$\frac{-d[A]}{dt} = k[A]^{3/2}$$
$$\int [A]^{-3/2} d[A] = -kt$$
$$\begin{bmatrix} 1\\ [A]^{1/2} \end{bmatrix}_{A_0}^{A(t)} = \frac{k}{2}t$$
$$[A(t)]^{-1/2} = [A_0]^{-1/2} + \frac{kt}{2}$$
$$[A(t)] = ([A_0]^{-1/2} + kt)^{-2}$$

half-life derivation:

At
$$t_{1/2}$$
, $[A_{t_{1/2}}] = \frac{[A_o]}{2}$,
 $[A_o]^{-1/2} - [A_o]^{-1/2} = +\frac{kt_{1/2}}{2}$,
 $\frac{\sqrt{2}-1}{[A_o]^{1/2}} = \frac{kt_{1/2}}{2}$,

$$t_{1/2} = \frac{2(\sqrt{2}-1)}{k[A_o]^{1/2}}$$

For reaction order n:

 $A \rightarrow B$, with a rate expression,

$$\begin{aligned} & -d[A] \\ & dt \\ & f[A]^{-n} d[A] = -kt \\ & \left[\begin{bmatrix} A \end{bmatrix}^{1-n} \\ & n-1 \end{bmatrix} \right]_{A_0}^{A(t)} = kt \\ & [A(t)]^{1-n} = ([A_0]^{1-n} + (n-1)kt) \\ & [A(t)] = ([A_0]^{1-n} + (n-1)kt)^{1/(1-n)} \end{aligned}$$

Show that the rate law for A + B → products (Eq. 1-46) reduces to the rate law for 2A → products (Eq. 1-41) when the initial concentrations [A]₀ and [B]₀ are identical.

$$\frac{1}{[\mathbf{A}]_{o} - [\mathbf{B}]_{o}} \ln \begin{pmatrix} [\mathbf{B}]_{o} [\mathbf{A}]_{t} \\ [\mathbf{A}]_{o} [\mathbf{B}]_{t} \end{pmatrix} = \mathbf{k}_{2} \mathbf{t} \qquad (\text{Eq. 1-46})$$

There are a number of different ways to solve this problem, **starting with Eq. 1-46.** The following is only one way:

Start with the left hand side of Eq. 1-46; let $[B]_o \rightarrow [A]_o$ and do some rearranging:

$$\begin{split} &\lim_{[B]_{o} \to [A]_{o}} \left[\frac{\ln[B]_{t} - \ln[A]_{t}}{[B]_{o} - [A]_{o}} - \frac{\ln[B]_{o} - \ln[A]_{o}}{[B]_{o} - [A]_{o}} \right] \\ &\{ [B]_{o} - [A]_{o} = ([B]_{t} + x) - ([A]_{t} + x) = [B]_{t} - [A]_{t} \} \\ &= \lim_{[B]_{t} \to [A]_{t}} \left(\frac{\ln[B]_{t} - \ln[A]_{t}}{[B]_{t} - [A]_{t}} \right) - \lim_{[B]_{o} \to [A]_{o}} \left(\frac{\ln[B]_{o} - \ln[A]_{o}}{[B]_{o} - [A]_{o}} \right) \\ &= \frac{d(\ln[B]_{t})}{d[B]_{t}} \bigg|_{[B]_{t} = [A]_{t}} - \frac{d(\ln[B]_{o})}{d[B]_{o}} \bigg|_{[B]_{o} = [A]_{o}} \\ &= \frac{1}{[A]_{t}} - \frac{1}{[A]_{o}} = k_{2}t \quad (\text{getting closer to Eq.1-41}) \end{split}$$

We need to include a factor of 2, because $[A]_{o} = [B]_{o}$, which gets us Eq.1-41:

$$\frac{1}{[A]_{t}} = \frac{1}{[A]_{o}} + 2k_{2}t$$

4. CKD Problem 1.5

The kinetics of formation of ethyl acetate from acetic acid and ethyl alcohol as homogeneously catalyzed by a constant amount of HCl has been studied by titrating 1-cc aliquots of the reaction mixture with 0.0612 N base at various times. The following data have been obtained at 25 °C.

t, min	base, cc	
0	24.37	
44	22.20	Initial concentrations
62	21.35	$[CH_{3}COOH] = 1.000M$
108	19.50	$[C_2H_3OH] = 12.756M$
117	19.26	$[C_2 \Pi_5 O \Pi] = 12.750 \text{M}$
148	18.29	$[H_2O] = 12.756M$
313	14.14	$[CH_3COOC_3H_5] = 0$
384	13.40	Overall reaction :
442	13.09	Overall reaction :
∞	12.68	$CH_3COOH + C_2H_5OH \Leftrightarrow CH_3COOC_2H_5 + H_2O$
		k_{l}

The reaction has been found to be first order with respect to each of the four reactants. Calculate the specific rate constants k_1 and k_1 . What is the equilibrium constant K_{eq} at 25 °C?

To save myself some time, the reaction above will be represented as the following:

A + B
$$\rightarrow$$
 C + D, where

$$\begin{vmatrix}
A = CH_{3}COOH \\
B = C_{2}H_{5}OH \\
C = CH_{3}COO_{2}H_{5} \\
D = H_{2}O
\end{vmatrix}$$

Define a progress variable, x:

Reactant/product	А	В	С	D
Initial concentration	1.00	12.756	0	12.756
Progress	- X	- X	+ x	+ x
Concentration at time, t	1.00-x	12.756-x	Х	12.756+x

$$\frac{dx}{dt} = k_1 (1.00 - x)(12.756 - x) - k_{-1} (12.756 + x)(x)$$

at $t = \infty$, $\frac{dx}{dt} = 0$, or,
 $K_{eq} = \frac{k_1}{k_{-1}} = \frac{[C]_{\infty}[D]_{\infty}}{[A]_{\infty}[B]_{\infty}} = \frac{(12.756 + x_{\infty})(x_{\infty})}{(1.00 - x_{\infty})(12.756 - x_{\infty})}$
((1.00 - (1.000)))

$$\mathbf{x}_{\infty} = [\mathbf{A}]_{o} - [\mathbf{A}]_{\infty} = 1.000 \,\mathrm{M} - \left(12.68 - \left(24.37 - \frac{1.000}{0.0612}\right)\right) = 0.715,$$

therefore,

$$K_{eq} = 2.81$$

Make a substitution, $k_{-1} = \frac{k_1}{2.81}$, in the rate equation above;

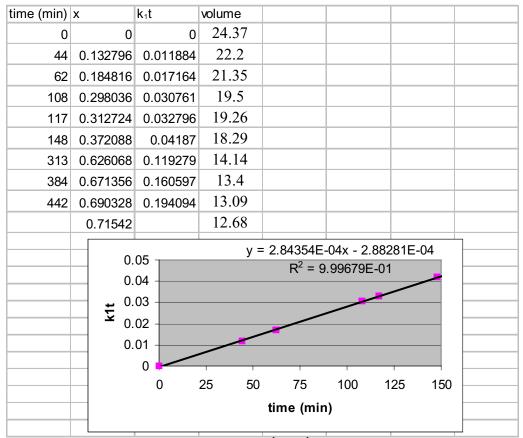
$$\frac{dx}{dt} = k_1 (0.644x^2 - 18.30x + 12.756)$$

Integrated to give,

$$k_1 t = 0.575 \ln \begin{bmatrix} 1.288x - 35.68 \\ 1.288x - 0.92 \end{bmatrix} - 0.210$$

Using the time values given in the table above, and plugging in x-values, where

$$\mathbf{x}(t) = 1 - \left(\operatorname{vol}_{\text{base}}(t) - \left(24.37 - \frac{1.000}{0.0612} \right) \times 0.0612 \right)$$



The slope of the graph is k_1 in units of $M^{-1}min^{-1}$:

 $k_1 = 2.84 \times 10^{-4} \text{ M}^{-1} \text{min}^{-1}$, and $k_{-1} = 1.01 \times 10^{-4} \text{ M}^{-1} \text{min}^{-1}$

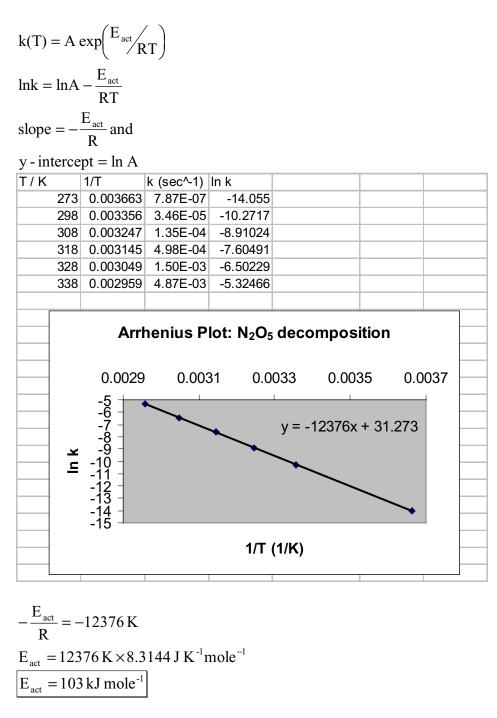
5. CKD Problem 1.6

Nitrogen pentoxide decomposes according to the reaction $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$

with a rate constant k. The measured rates between 273 K and 338 K are included in the chart below.

Make an Arrhenius plot of the data, and determine E_{act} and A for the first-order decomposition of nitrogen pentoxide.

The slope and y-intercept of the Arrhenius plot are related to E_{act} and A in the following manner:



 $\frac{\ln A = 31.273}{A = 3.82 \times 10^{13} \text{ s}^{-1}}$

6. According to the information provided on some milk cartons, homogenized milk will keep for 1/3 day at 80°F, for $\frac{1}{2}$ day at 70°F, for 1 day at 60°F, for 2 days at 50°F, for 10 days at 40°F, and for 24 days at 32°F. Calculate the **activation energy** for the process that spoils milk.

We are not told how far the spoiled milk is after the given times, but it will not make a difference to the activation energy as long as we can assume the spoilage is the same at each given time (the spoilage *would* affect the Arrhenius coefficient, but nobody asked us about that). The given times are the 1/e time for spoilage, so that the rate is the simply the reciprocal of the indicated time; e.g., rate at 80°F is 3 days⁻¹. Remember to convert from °F to K.

