MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Rates of Unimolecular Reactions: RRKM

Consider a unimolecular reaction: $\mathrm{A} \rightarrow$ products

isomerization	$\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$
decomposition (with barrier to recombination)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$

In order to occur, these reactions must overcome a barrier, E_{0}. They can be activated to $\mathrm{E}^{*}>\mathrm{E}_{0}$ by collision, overtone pumping, infrared multiphoton excitation, optical excitation followed by Internal Conversion, or Stimulated Emission Pumping.

A molecule becomes activated, either by absorption of a photon or by a collision. The activated molecule has a definite E and J . If $\mathrm{E}>\mathrm{E}_{0}$, where E_{0} is the energy of the zero-point-energy-dressed barrier for the unimolecular process:

We want to predict the rate of the reaction.

Standard mechanism (from 5.60)

activation	$\mathrm{A}+\mathrm{M}$	\rightarrow	$\mathrm{A}^{*}+\mathrm{M}$	k_{1}
deactivation	$\mathrm{A}^{*}+\mathrm{M}$	\rightarrow	$\mathrm{A}+\mathrm{M}$	k_{-1}

irreversible decay into products $\mathrm{A}^{*} \rightarrow$ products k_{2}
Steady state for A*

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{~A} *]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~A}][\mathrm{M}]-\mathrm{k}_{-1}\left[\mathrm{~A}^{*}\right][\mathrm{M}]-\mathrm{k}_{2}\left[\mathrm{~A}^{*}\right]=0 \\
& \begin{aligned}
{\left[\mathrm{A}^{*}\right]_{\mathrm{SS}} } & =\frac{\mathrm{k}_{1}[\mathrm{~A}][\mathrm{M}]}{\mathrm{k}_{-1}[\mathrm{M}]+\mathrm{k}_{2}}
\end{aligned} \\
& \frac{\mathrm{~d}[\text { products }]}{\mathrm{dt}}=\mathrm{k}_{\text {uni }}[\mathrm{A}]
\end{aligned}=\mathrm{k}_{2}\left[\mathrm{~A}^{*}\right] .
$$

"Unimolecular" rate is actually pressure-dependent.

But A* really is produced in a distribution of energies of activation and k_{2} will be E-
dependent. We will have to integrate over E.

$$
\begin{array}{cc}
\mathrm{A}+\mathrm{M} \rightarrow \mathrm{~A} *(\mathrm{E}, \mathrm{E}+\mathrm{dE})+\mathrm{M} & \mathrm{dk}_{1} \\
\mathrm{~A} *(\mathrm{E}, \mathrm{E}+\mathrm{dE})+\mathrm{M} \rightarrow \mathrm{~A}+\mathrm{M} & \mathrm{k}_{-1} \\
\mathrm{~A} *(\mathrm{E}) \rightarrow \text { products } & \mathrm{k}(\mathrm{E})
\end{array}
$$

Assume that k_{-1} is not E -dependent. Thus

$$
\begin{gathered}
\mathrm{dk}_{\text {uni }}(\mathrm{E}, \mathrm{E}+\mathrm{dE})=\frac{\left(\mathrm{k}_{2}(\mathrm{E}) / \mathrm{k}_{-1}\right) \mathrm{dk}_{1}}{1+\mathrm{k}_{2}(\mathrm{E}) /\left(\mathrm{k}_{-1}[\mathrm{M}]\right)} \\
\mathrm{k}_{\mathrm{uni}}=\int_{\mathrm{E}_{0}}^{\infty} \frac{\mathrm{k}_{2}(\mathrm{E})\left(\mathrm{dk}_{1} / \mathrm{k}_{-1}\right)}{1+\mathrm{k}_{2}(\mathrm{E}) /\left(\mathrm{k}_{-1}[\mathrm{M}]\right)}
\end{gathered}
$$

The k_{-1} relaxation converts the $\mathrm{E}, \mathrm{E}+\mathrm{dE}$ region of activated states into a steady-state distribution of states $\mathrm{P}(\mathrm{E})$.

Replace $\mathrm{dk}_{1} / \mathrm{k}_{-1}$ by $\mathrm{P}(\mathrm{E}) \mathrm{dE}$ and replace $\mathrm{k}_{-1}[\mathrm{M}]$ (the deactivation frequency) by ω (different from $\mathrm{k}_{\mathrm{uni}}(\mathrm{p} \rightarrow 0) \equiv \omega^{\prime}$).

$$
\begin{array}{r}
k_{\text {uni }}=\int_{E_{0}}^{\infty} d E \frac{k_{2}(E) p(E)}{1+k_{2}(E) / \omega} \\
\text { but since } k_{2}(E)=0 \text { for } E<E_{0} \\
k_{\text {uni }}=\int_{0}^{\infty} d E \frac{k_{2}(E) p(E)}{1+k_{2}(E) / \omega}
\end{array}
$$

At high pressure $\omega \rightarrow \infty$ and the integrand simplifies to

$$
\mathrm{k}_{\infty}=\int \mathrm{dE} \mathrm{k}_{2}(\mathrm{E}) \mathrm{p}(\mathrm{E})
$$

How do we compute $\mathrm{k}_{2}(\mathrm{E})$? RRKM.

Non-Lecture

Some notation.

$$
\mathrm{E}=\mathrm{E}_{+}+\mathrm{E}_{0}+\mathrm{E}_{\text {active }}
$$

E is total energy, E_{0} is the energy of barrier (zero-point dressed), E_{+}is the amount of energy not in the active mode, and $\mathrm{E}_{\text {active }}$ is the amount of above-barrier energy in the active mode.

We are doing a microcanonical calculation so we want to know how many energy levels there are at total energy E where $\mathrm{E}_{\text {active }} \geq 0, \mathrm{~W}^{\dagger}(\mathrm{E})$.

We want to compare this total number of states that will react to the total density of states at energy E. This ratio

$$
\frac{W^{\dagger}(E)}{\rho(E)}
$$

has units [\#]/[\#/E]. If we divide by h, we get a quantity that has units of $t^{-1} \cdot \frac{W^{\dagger}(E)}{h \rho(E)}$ has the correct units for a unimolecular rate constant. Why h^{-1} ?

$$
\mathrm{W}^{\dagger}(\mathrm{E})=\int_{\mathrm{E}_{+}=0}^{\mathrm{E}_{+}=\mathrm{E}-\mathrm{E}_{0}} d \mathrm{E}_{+} \rho^{\dagger}\left(\mathrm{E}_{+}\right)
$$

When $\mathrm{E}_{+}=0$, all of the energy is in the active mode. When $\mathrm{E}_{+}=\mathrm{E}-\mathrm{E}_{0}, \mathrm{E}_{\text {active }}=0$ thus there is no extra energy in the active mode. $\rho^{\dagger}\left(\mathrm{E}_{+}\right)$is the density of states when there is energy E_{+}in the $n-1$ stable modes.

Thus we need to compute $\rho^{\dagger}\left(\mathrm{E}_{+}\right)$and then integrate it to obtain $\mathrm{W}^{\dagger}(\mathrm{E})$. We also need to know $\rho(\mathrm{E})$.

A Simple model.

Assume all modes, including the active one, have the same frequency, v.
There are s modes. s is an integer
$E=j h \nu \quad j$ is an integer \quad (total energy)
$\mathrm{E}_{0}=\mathrm{mh} \nu \quad \mathrm{m}$ is an integer $\quad \begin{aligned} & \text { (energy required in active mode to } \\ & \text { get over barrier) }\end{aligned}$ get over barrier)
want: $\frac{\text { probability that special oscillator has } \geq \mathrm{m} \text { quanta }}{\text { total } \# \text { of ways of distributing } \mathrm{j} \text { quanta }}$
How many ways can j indistinguishable quanta be distributed into s indistinguishable modes? Represent problem by dots \bullet and partitions I .

$$
\begin{array}{ll}
\text { one } \bullet \text { for each quantum, } & \text { for partitions between s modes, } \mid, \\
\text { need } j \text { indistinguishable } \bullet \text { 's } & \text { need } s-1 \text { indistinguishable partitions }
\end{array}
$$

From combinatorics, we know

$$
\Omega(\mathrm{j}, \mathrm{~s})=\frac{(\mathrm{j}+\mathrm{s}-1)!}{\mathrm{j}!(\mathrm{s}-1)!} .
$$

This is the number of energy states at $\mathrm{E}=\mathrm{jhv}$, thus

$$
\begin{aligned}
& \rho(E(\mathrm{j})) \mathrm{dE}=\Omega(\mathrm{j}, \mathrm{~s}) \mathrm{dj} \\
& \rho(\mathrm{E}(\mathrm{j}))=\frac{\mathrm{dj}}{\mathrm{dE}} \Omega(\mathrm{j}, \mathrm{~s}) .
\end{aligned}
$$

We want to derive both $\mathrm{W}(\mathrm{E})$ and $\rho(\mathrm{E})$ from $\Omega(\mathrm{j}, \mathrm{s})$. First we compute $\mathrm{W}(\mathrm{E})$, which is a total number of states at or below E obtained by integrating the density of states

$$
\mathrm{W}(\mathrm{E})=\int_{0}^{\mathrm{E}} \mathrm{dE} \mathrm{E}^{\prime} \rho\left(\mathrm{E}^{\prime}\right)
$$

thus

$$
\begin{aligned}
& \rho(E)=\frac{d W}{d E}=\frac{d W}{d j} \frac{d j}{d E}=\Omega(j, s) \frac{d j}{d E} \\
& \frac{d W}{d j}=\Omega(j, s)=\frac{(j+s-1)!}{j!(s-1)!} .
\end{aligned}
$$

Also, since $E=j h v, \frac{d j}{d E}=\frac{1}{h v}$.
So what is $\mathrm{W}(\mathrm{E})$? Demonstrate that

$$
\begin{aligned}
& W(j)= \frac{(j+s)!}{j!s!} \text { by showing that } \frac{d W}{d j} \text { has the required value. } \\
& \begin{aligned}
\frac{d W}{d j} & =\frac{W(j)-W(j-1)}{j-(j-1)}=\frac{W(j)-W(j-1)}{1} \quad\binom{\text { definition of }}{\text { derivative }} \\
& =\frac{(j+s)!}{j!s!}-\frac{(j+s-1)!}{(j-1)!s!} \\
& =\frac{(j+s)!-j(j+s-1)!}{j!s!} \\
& =\frac{(j+s)(j+s-1)!-j(j+s-1)!}{j!s!} \\
& =\frac{s(j+s-1)!}{j!s!}=\frac{(j+s-1)!}{j!(s-1)!}=\Omega(j, s)
\end{aligned}
\end{aligned}
$$

so all is well!

Now, use this simple model to compute $\mathrm{k}(\mathrm{E})=\frac{\mathrm{W}^{\dagger}(\mathrm{E})}{\mathrm{h} \rho(\mathrm{E})}$.
Need m quanta in active mode, thus j -m quanta in $\mathrm{s}-1$ inactive modes.

$$
\begin{aligned}
& \text { s-1 modes } \\
& \text { j-m quanta } \downarrow \\
& \mathrm{W}^{\dagger}(\mathrm{E})=\frac{(\mathrm{j}-\mathrm{m}+\mathrm{s}-1)!}{(\mathrm{j}-\mathrm{m})!(\mathrm{s}-1)!} \\
& \begin{array}{|l}
\begin{array}{l}
\mathrm{s} \text { modes } \\
\mathrm{j} \text { quanta }
\end{array} \\
\\
\\
\\
\\
\\
\end{array} \\
& \stackrel{\vee}{\rho}(E)=\frac{1}{h v} \frac{(j+s-1)!}{j!(s-1)!} \\
& \begin{aligned}
k(E)=\frac{W^{\dagger}(E)}{h \rho(E)}= & v \frac{(j-m+s-1)!j!}{\underbrace{(j-m)!(j+s-1)!}_{\approx 1 \text { in limit } j \gg m, j \gg s}}=v f(j, m, s)
\end{aligned}
\end{aligned}
$$

$\mathrm{k}(\mathrm{E})$ is slower than the constant vibrational frequency for all modes, by the simple factor $\mathrm{f}(\mathrm{j}, \mathrm{m}, \mathrm{s})$.
In the limit $\mathrm{s} \gg \mathrm{j}$ and $\mathrm{j}-\mathrm{m} \approx 1$ (near threshold),

$$
k(E) \rightarrow v \frac{s!j!}{1!(s+m)!} \approx v \frac{j!}{s^{j-1}} \ll v
$$

Improvements

a is an empirical fudge factor

$$
\begin{array}{ll}
\mathrm{a}=1-\beta \mathrm{w}\left(\mathrm{E} / \mathrm{E}_{\mathrm{z}}\right) \\
\beta=\frac{\mathrm{s}-1}{\mathrm{~s}} \frac{\left\langle v^{2}\right\rangle}{\langle v\rangle^{2}} \\
\mathrm{w}=\left[5.00\left(\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{z}}}\right)+2.73\left(\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{z}}}\right)^{1 / 2}+3.51\right]^{-1} & 0.1<\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{z}}}<1 \\
\mathrm{w}=\exp \left[-2.4191\left(\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{z}}}\right)^{1 / 4}\right] & 1<\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{z}}}<8
\end{array}
$$

Better Still: Beyer-Swineheart, Even better: direct count
Return to problem of computing $\mathrm{k}_{\text {uni }}(\mathrm{T})$ from $\mathrm{k}_{\text {uni }}(\mathrm{E}, \mathrm{J})$.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{M} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\longrightarrow}} \mathrm{~A} *+\mathrm{M} \\
& \mathrm{~A} * \xrightarrow[\mathrm{k}_{2}]{\longrightarrow} \text { products }
\end{aligned}
$$

Note that the energy in the activated complex is $\mathrm{E}^{\ddagger}=\mathrm{E}^{*}-\mathrm{E}_{0}=\mathrm{E}_{\text {vib }}+\mathrm{E}_{\text {rot }}-\mathrm{E}_{0}$

$$
\begin{aligned}
\mathrm{k}_{\mathrm{uni}} & =\int_{0}^{\infty} \frac{\mathrm{k}_{2}\left(\mathrm{E}^{*}\right) \mathrm{P}\left(\mathrm{E}^{*}\right)}{1+\mathrm{k}_{2}\left(\mathrm{E}^{*}\right) / \omega} \mathrm{dE} * \\
\mathrm{E}^{*} & =\mathrm{E}_{\mathrm{vib}}+\mathrm{E}_{\text {rot }} \\
\mathrm{P}\left(\mathrm{E}^{*}\right) & =\mathrm{P}\left(\mathrm{E}_{\mathrm{vib}}\right) \mathrm{P}\left(\mathrm{E}_{\mathrm{rot}}\right)=\frac{\rho\left(\mathrm{E}_{\mathrm{vib}}\right) \mathrm{e}^{-\mathrm{E}_{\mathrm{vib}} / \mathrm{kT}}}{\mathrm{q}_{\text {vib }}^{*}}, \mathrm{~A}^{*} \\
\mathrm{k}_{\mathrm{uni}} & =\int_{0}^{\infty} \int_{0}^{\infty} \frac{\rho\left(\mathrm{E}_{\mathrm{rot}}\right) \mathrm{e}^{-\mathrm{E}_{\mathrm{rot}} / k T}}{\mathrm{q}_{\mathrm{rot}}^{*}}, \mathrm{~A}^{*}\left(\mathrm{E}_{\mathrm{vib}}+\mathrm{E}_{\mathrm{rot}}\right) \mathrm{P}\left(\mathrm{E}_{\mathrm{vib}}\right) \mathrm{P}\left(\mathrm{E}_{\mathrm{rot}}\right) \\
1+\mathrm{k}_{2}\left(\mathrm{E}_{\mathrm{vib}}+\mathrm{E}_{\mathrm{rot}}\right) / \omega & \mathrm{E}_{\mathrm{vib}} \mathrm{dE}_{\mathrm{rot}}
\end{aligned}
$$

Now evaluate $\mathrm{k}_{2}\left(\mathrm{E}_{\mathrm{vib}}+\mathrm{E}_{\mathrm{rot}}\right)$.

