
MIT OpenCourseWare 
http://ocw.mit.edu 

5.62 Physical Chemistry II

Spring 2008


For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


5.62 Spring 2008 Lecture #30 Page 1 

Kinetic Theory of Gases: Collision Dynamics and


Scattering


The goal of kinetic theory is to understand the collision process between a pair of 
molecules. In this lecture we give a simple description of the classical scattering process. 

Although we cannot completely develop this subject, it is important to know that 
scattering experiments are an invaluable source of information about molecular 
interactions and that the results of scattering experiments can be used to predict transport 
coefficients for g

incoming
flux

scattering
angle

ases. 
The typical scattering experiment consists
in sending a flux of particles into a
stationary target gas and observing the
deflection of particles at a distance from
the target region at various scattering 
angles. 

We describe this process at the molecular level by considering a particular collision pair. 
We assume the following for the colliding pair: In center of mass coordinates the energy 
of the pair is given by: 

 

E =
µ

2
!x(t)

2
+ !y(t)

2!" #$+V[r(t)]      µ=
m1m2

m1 +m2

and r(t) is the distance between the colliding particles. 

Only two components (x and y) are needed to characterize the collision because it is 
possible to show that two particle scattering is confined to a plane in the center of mass 
coordinate system. 

The energy is the sum of the x and y kinetic energy of the fictitious particle with reduced 
mass µ. There is a potential energy, V[r(t)], that depends only on the distance between 
the two centers. The collision is assumed to be “elastic,” which means that no energy is 
transferred into the internal modes of the two collision partners. In this case the total E is 
constant at every point along the trajectory. 
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In polar coordinates, x(t) = r(t)cos !(t)[ ], y(t) = r(t)sin !(t)[ ], and the energy is: 

 

E =
µ

2
!r(t)

2
+ r(t)

2 !!(t)2"# $%+V[r(t)] . 

In addition, because the force is central there is conservation of angular momentum

 

!
L =
!
rx
!
pduring the collision. The angular momentum is defined as . Since 

 

!
r = (x,y,0) = (r cos!, r sin!,0)  and  

!
p=("rcos!-rsin! "!, "rsin!+rcos! "!,0)

and L = Lz = xpy ! ypx , we obtain the result for the conserved, i.e. independent of time, 

angular momentum during the collision: 

 
L =µr(t)

2 !!(t) . 

We imagine a collision process where the incoming particle approaches the target at t = – 

∞ from x = - ∞; thus r(!") # +"  and $(0)= %

2
. We choose the coordinate system so that 

the initial particle velocity is in the x direction with value g; thus 
 
!x(!") = g and 

 
!y(-!)=0 , and the particle position is at impact parameter “b” y(-∞) = b. As the collision 

proceeds, the particle is attracted or repelled by the scattering center and eventually is 

scattered away so that at t = + ∞, the particle has been scattered at an angle 

! = " # $ +%( ) . This scattering angle is a function of the impact parameter, incoming 

relative velocity g, and of course of the scattering potential V[r]. The situation is 

diagrammed below: 

! = ! – "(+#)

x

$

b "

y
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The initial energy and angular momentum are: 

E =
µ

2
g2      and    L=µbg

and these two quantities are conserved throughout the collision. 

Using the expression for the angular momentum to eliminate 
 
!!(t) from the energy 

equation on the previous page, we find: 

 

µ

2
g2 = E =

µ

2
!r(t)2 +

bg

r(t)

!

"
#

$

%
&
2'

(
)
)

*

+
,
,
+V[r(t)]

 

!r(t)2 = g2 1! b

r(t)

"

#
$

%

&
'
2(

)
*
*

+

,
-
-
! 2
µ
V[r(t)] . 

and, solving for 
 
!r(t) , 

If we take the square root, we obtain; 

 

!r(t) = ± g2 1! b

r(t)

"

#
$

%

&
'
2(

)
*
*

+

,
-
-
! 2
µ
V[r(t)] . 

The +/- signs are important here. 

In the collision process we are interested in the scattering and not the details of the 
trajectory over time. Thus we use the relation 

 

dr

d!
=
!r(t)

!!(t)

to eliminate time in favor of the angle that describes the collision process. Since 
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!!(t) =
µbg

r(t)2
,  we have  

dr

d!
=
!r(t)r(t)2

µbg

and substituting for 
 
!r(t) leads to the central equation to describe the scattering process: 

dr

d!
= ±

r(t)2

bg
g2 1" b

r

#
$
%

&
'
(
2)

*
+
+

,

-
.
.
" 2
µ
V[r]

We divide the collision into the incoming part when the distance is decreasing and the 
angle is increasing. This continues until the distance of closest approach rm is reached at 
angle ! m. On the outgoing part of the trajectory both the angle and the distance increase. 
Thus: 

 

incoming:    !r(t) < 0,  !!(t) > 0 ,

outgoing:      !r(t) > 0,  !!(t) > 0
. 

Thus, we take the negative sign for dr

d!
"
#
$

%
&
' on the incoming part of the trajectory and the 

positive sign for dr
d!

"
#
$

%
&
' on the outgoing part of the trajectory; the distance of closest 

approach rm divides the two regions. At the distance of closest approach 
 
!r(t) = 0 so 

  g2 1! b

rm

"

#
$

%

&
'

2(

)
*
*

+

,
-
-
=

2

µ
V[rm ] . 

We are now in a position to integrate the scattering equation that we write as: 

d! = ±
bdr

1" b / r( )
2#

$
%
&" (2 /µg

2 )V[r]

On the incoming part of the trajectory: 

d!
0

!m" = #b
dr

r2 1# b / r( )
2$

%
&
'# (2 /µg

2 )V[r]
(

rm

" . 
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On the outgoing part of the trajectory: 

d!
!m

"#$

% = +b
dr

r2 1# b / r( )
2&

'
(
)# (2 /µg

2 )V[r]
rm

*

% . 

Our final result for the scattering angle, χ, is: 

!(g,b) = "+ 2b
dr

r2 1# b / r( )
2$

%
&
'# (2 /µg

2 )V[r]
(

rm

)
where the distance of closest approach is found from the equation: 

  g2 1! b

rm

"

#
$

%

&
'

2(

)
*
*

+

,
-
-
=

2

µ
V[rm ] . 

Hard spheres. For hard spheres 
collision diameter. For 0 < b < σ the distance of closest approach is rm = σ and we 
have: 

V(r) =! , for r<", and V(r)=0 for r # " where σ is the 

!(b) = "+ 2b
dr

r
2
1# b / r( )

2$
%

&
'(

)

* o < b < ) . 

This integral is easy to evaluate. After a change of variables x = b/ r: 

!(b) = "+ 2
dx

1# x
2$% &'

0

b /(

)  = " - 2sin
-1

(x)
0

b/(
= " - 2sin

-1 b

(
*
+
,

-
.
/ = 2cos

-1 b

(
*
+
,

-
.
/   o < b < (

For a head on collision, b = 0, and χ(0) = π. 

If b > σ, there is no collision and the distance of closest approach is rm = b. the resulting 
scattering angle is: 
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!(b) = "+ 2b
dr

r
2

1# b / r( )
2$

%
&
'(

b

)     b > * . 

Again after a change of variables x = b/ r: 

!(b) = " # 2
dx

1# x
2$% &'

0

1

( = " - 2sin
-1

(x)
0

1

= " - 2
"
2
= 0    b > ) . 

At these impact parameters there is no deflection.

Scattering angle from hard sphere of diameter σ
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1
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2
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3

1

! (in radians)

b/"

Coulomb interaction. For a Coulomb interaction of the form V(r) = !

r
the deflection 

action can be found exactly. In this case the distance of closest approach is found from 

  g2 1! b

rm

"

#
$

%

&
'

2(

)
*
*

+

,
-
-
=

2

µ

.
rm

. 

The distance of closest approach is 

rm

b
=

u

2
+

u

2

!
"
#

$
%
&

2

+1    where  u=
2'
µg2b

. 
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The integration for the scattering angle can be done. The answer is: 

! = " # 2cot#1 $
µg2b

%

&
'

(

)
* = " # 2cot#1 u

2

%
&
'

(
)
* . 

Notice that this formula holds for both repulsive and attractive Coulombic potentials. 

Inverse square potential. This potential can also be solved exactly 

If V(r) = !

r
2

. We find for the distance of closest approach: 

  1! b

rm

"

#
$

%

&
'

2(

)
*
*

+

,
-
-
=

2

µg2

.
b2

b

rm

"

#
$

%

&
'

2

   or  
rm

b

"
#
$

%
&
' = 1+ v    where   v=

2

µg2

.
b2

. 

The result for the scattering angle is: 

! = " # " 1+ v( )
#
1

2 = " # " 1+ 2$
µg2b2

%

&
'

(

)
*
#
1

2

. 

Scattering from V(r)=!/r2

! (in radians)

"

repulsive # > 0

attractive # > 0

b 2#2 µg2
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Thus we have for the differential scattering cross section dσ 
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Scattering cross sections 
The scattering takes place as shown in the 
figure as at the beginning of this lecture. 
Looking down the x-axis, the flux of 
incident particles is imagined to fall in a 
uniform fashion on a certain cross section. 
A differential cross section is the impacted 
area of size 2πbdb, as indicated in the 
figure on the left. 

d! = 2"bdb

The total cross section !
T

is found by integrating over the total area that the incident 

beam hits: 

!
T
= 2"db = "b

max

2

0

b
max

# . 

The scattering takes those particles in the incident beam which impact the target between 
b and b+db into a particular scattering angle χ as described earlier. The measurement is 
made by placing a collector that intercepts the particles that are scattered into a small

d! = 2"sin#d#solid angle . Since the collision dynamics connects this differential solid 

angle to a differential element of the impact parameter we have the relation: 

d!

d"
= b

db

d#

1

sin#
. 

Or alternatively, in terms of the scattering function S(χ) 

d! = 2"S(#)sin#d#  where  S(#) = b
db

d#

1

sin#
. 

Measurement of the scattering cross section gives information about the molecular 
parameters that characterize the interaction potential between the colliding partners. 
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Such measurements are an important tool for physical chemists who study collision 
dynamics in order to learn about transport properties or reaction dynamics. 

The simplest example of cross section and scattering function is colliding hard 
spheres. Earlier in this lecture we determined for hard spheres: 

!(b)=2cos-1 b

"
#
$
%

&
'
( for b<σ. 

It follows that db
d!

=
"
2
sin

!
2

#
$
%

&
'
( and hence 

 S(!) = b

"
2

sin
!
2

#
$
%

&
'
(

sin!
=

" 2

2
cos

!
2

#
$
%

&
'
(sin

!
2

#
$
%

&
'
(

sin!
=

"
2

#
$
%

&
'
(

2

. 

For hard spheres the scattering function is spherically isotropic. Its magnitude 
determines the collision diameter of the hard spheres σ. The differential scattering cross 
section for the hard spheres is: 

d! =
!
2

"
#
$

%
&
'
2

2(sin)d) . 
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