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Band Theory of Solids 

In the free electron theory we ignored all effects of the nuclei in the 
lattice, utilizing a particle-in-the-box approach sans a potential. In the band 
theory of solids considered here, we include a very simple potential representing 
the nuclei that leads to “bands” of potentially occupied states that are separated 
by gaps. The forces on the electrons are the regularly spaced, positively charged, 
essentially stationary nuclei and they are represented by delta functions. 

Dirac Comb Potential: The simple periodic structure depicted below reproduces 
many interesting aspects of the band theory of metals. It is referred to as a 
Dirac comb, whereas a more sophisticated model, the Kronig-Penny model, employs 
a comb of rectangular shapes. The actual shape is not so important for our 
purposes. 

The potential periodic repeats itself after some distance a (the lattice spacing) so 
that we can write the potential as 

V (x) =V (x + a)

This is the same idea that we used previously (the approach of Born and von 
Kármán) in our treatment of Debye solids and in the free electron theory of 
metals. 

Bloch’s Theorem - Felix Bloch [Z. Physik 52, 555 (1928)] suggested an ingenious 
approach to treating this problem that is today know as Bloch’s theorem. For the 
potential like the periodic comb above, the solution to the time independent 
Schrödinger equation (TISE) 
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can be taken to satisfy the condition 

! (x + a) = eiKa! (x)

for some constant K. K could depend on E, but is generally independent of x. 

We assume we have an operator D̂ that moves us along the chain for “a” 
units such that 

D̂f (x) = f (x + a)

For a periodic potential, D̂ commutes with Ĥ -- D̂, Ĥ!
"#

$
%&
= 0 . Therefore, we can 

choose eigenfunctions of Ĥ that are simultaneously eigenfunctions D̂ . 

or 

Therefore 

D! = "!

! (x + a) = "! (x)

! = e
iKa

We will see below that K is real. 

For a macroscopic crystal (containing Na = Avogodro’s number of sites) we 
can neglect the edge effect, and use the Born-von Kármán method to impose the 
boundary condition 

! (x) =! (x + Na)

! (x + Na) = eiNKa! (x)

Therefore it follows that 

Since 

and therefore 
eiNKa =1= cos(NKa)+ isin(NKa)

NKa = 2!n and K =
2!n
Na

"
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n = 0, ±1, ± 2,.....() *+



0 ! x ! a . 
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Thus, K is real and we need to solve the TISE within a single cell (for example, for 
the interval 

Potential V(x) – We assume that V(x) consists of a long string of delta function 
spikes (the Dirac comb) depicted above. This is represented algebraically as 

V (x) =! "(x # ja)
j=0

N#1

$

Thus, the x-axis of the comb has been “wrapped around” so the Nth spike occurs at 
x= -a. 

0 < x < a : In this region the potential is zero so 
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where 

per usual. And the general solution is 

! (x) = Asin(kx)+ Bcos(kx) 0 < x < a

!a < x < 0 : In the cell immediately to the left of the origin 

! (x) = e"iKa Asink(x + a)+ Bcosk(x + a)#$ %& !a < x < 0

At x=0, ! (x) must be continuous and therefore 

B = e
!iKa

Asin(ka)+ Bcos(ka)"# $%

Rearranging the expression yields 

Asin(ka) = B e
!iKa ! cos(ka)"

#
$
% (1)
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At the boundary between the cells the derivative of ! (x) exhibits a discontinuity 
the intensity being proportional to ! the amplitude of the delta function. 

To deal with this situation we integrate the TISE from !" to + ! (around 
zero) and take the limit as ! " 0 . 
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which yields 
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rearranging we obtain 
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Usually the limit on the RHS vanishes and therefore !" (x) !x( ) is continuous. 
However when V(x) is a delta function, this argument fails. In the case considered 
here 

 
V (x) =!i"(x) and we obtain 
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Next we evaluate the two derivatives and take there!" !x( )
+#

and !" !x( )
#$

difference at x=0 to obtain 

 

Ak ! e!iKak Acos(ka)! Bsin(ka)"# $% =
2m&
!
2

'
()

*
+,
B (2) 

Solving (1) for A, substituting into (2), and canceling a factor kB yields 

 

e
iKa ! cos(ka)"
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!iKa cos(ka)"
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!iKa sin2(ka) =
2m&
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2
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and this simplifies after some algebra to 
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cos(Ka) = cos(ka)+
m!
!
2
k
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sin(ka) (3)


This equation determines the possible values of k and therefore the 
permitted energies. To place it into a more transparent form we let 

z ! ka and 
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then we can write 

This function has two parts 

f (z) ! cos(z)+ "
sin(z)

z

cos(z) : this term simply oscillates with z=ka ad infinitum. 

!
sin(z)

z
: This is a sinc function scaled by ! . It is localized around z=0 

and oscillates, decaying to zero as z!" . 

Note that in (3) above and outside these limits there is not a solution cos(Ka) = ±1

cos(Ka) cannot be >1. to the equation since These regions, which arise from the 

sinc term, correspond to “gaps” and are forbidden energies. These are separated 
by “bands” which are allowed energies. Within a band any energy is allowed since 

Ka =
2!n
N

"
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%
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recall that N is a very large number and n = an integer.


The figure below illustrates the bands and gaps. The oscillating function


!descends from on high ( =10 in this example) and decays to a constant cos (ka). 
The shaded regions between ±1 correspond to the bands and the unshaded to the 
gaps. 
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For a filled band (with q=2) it takes a large energy to excite an electron across the 
gap to the conduction band – this is an insulator ! 

However, if the band is partially filled it generally takes less energy to excite an 
electron and this material is typically a conductor. 

If we dope an insulator with a few atoms with either larger or smaller q, then we 
place extra electrons into the next high band or create holes in the previously 
filled band. This permits weak currents to flow and the materials are referred to 
as semiconductors. 

Summary: In the free electron theory all solids are conductors because there 
are no gaps in the energy level scheme. It takes the periodic potential of band 
theory to account for the factors of ~1030 that are observed experimentally in 
resistivity/conductivity. 




